Clinical practice guidelines on image-guided thermal ablation of primary and metastatic lung tumors (2022 edition)

ABSTRACT

The main contents of the Clinical Practice Guidelines on Image-Guided Thermal Ablation (IGTA) of Primary and Metastatic Lung Tumors (2022 Edition) include the following: epidemiology of primary and metastatic lung tumors; the concepts of the IGTA and common technical features; procedures, indications, contraindications, outcomes evaluation, and related complications of IGTA on primary and metastatic lung tumors; and limitations and future development.

KEY WORDS: Image-guided thermal ablation, lung cancer, metastatic lung tumor

INTRODUCTION

Approximately, 2.2 million new cases of lung cancer and 1.8 million lung cancer-related deaths were reported in 2020 worldwide. Although the incidence of lung cancer ranks the second in the world, the mortality rate is the highest.[1] Lung cancer is the leading cause of cancer death in both China and the USA. By 2022, China and the USA are expected to have approximately 870,982 and 238,032 new lung cancer cases, and 766,898 and 144,913 lung cancer deaths, respectively. [2] Primary lung cancer is mainly divided into nonsmall cell lung cancer (NSCLC) and small cell lung cancer, which account for 85-90% and 10-15% of total diagnoses, respectively. For early-stage NSCLC, surgical resection with curative intent comprises the primary therapy^[3,4]; however, approximately 60% of lung cancers cannot be resected surgically due to various reasons (such as poor cardiopulmonary function or advanced age). Stereotactic body radiation therapy (SBRT) is a good regimen for most patients with lung cancer who cannot undergo surgical resection, but it also has limitations.[5-7] Therefore, many

Access this article online

Website: www.cancerjournal.net

DOI: 10.4103/jcrt.jcrt_880_22

novel local treatment approaches have been developed, including image-guided thermal ablation (IGTA) therapy. IGTA, a precise minimally invasive technique, has been applied on treating early-stage lung cancer. The number of patients with lung cancer treated by IGTA each year is rapidly increasing.[8-16] Pulmonary metastases are widespread in clinical practice, and the lung is the second most common organ to which all tumors metastasize. Nearly one-third of patients who died of cancer had pulmonary metastases. Malignant tumors of epithelial origin (such as colorectal cancer), sarcomas, malignant tumors of the reproductive and urinary systems (such as renal cell carcinoma), malignant melanoma, and other tumors account for 43, 42, 7, 6, and 2% of pulmonary metastasis cases, respectively.[16,17] Currently, IGTA has been shown to be one of the effective methods on treating pulmonary metastases.[18-26]

In 2014 and 2017, two editions of the expert consensus on thermal ablation for primary and metastatic lung tumors (referred to as consensus) were published in China. The English version of the consensus was published in 2015 and 2018, respectively. [29,30] The publication of the consensus

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

 $\textbf{For reprints contact:} \ WKHLRPMedknow_reprints@wolterskluwer.com$

Cite this article as: Ye X, Fan W, Wang Z, Wang J, Wang H, Niu L, et al. Clinical practice guidelines on image-guided thermal ablation of primary and metastatic lung tumors (2022 edition). J Can Res Ther 2022;18:1213-30.

Xin Ye, Weijun Fan¹, Zhongmin Wang², Junjie Wang³, Hui Wang⁴, Lizhi Niu⁵, Yong Fang⁶, Shanzhi Gu⁷, Lingxiao Liu8, Baodong Liu9, Yiping Zhuang¹⁰, Zhigang Wei, Xiao Li¹¹, Xiaoguang Li¹², Yuliang Li¹³, Chunhai Li¹⁴, Xia Yang¹⁵, Wuwei Yang¹⁶, Po Yang¹⁷, Zhengyu Lin¹⁸, Zhiqiang Meng¹⁹, Kaiwen Hu²⁰, Chen Liu²¹, Yong Huang²², Guanghui Huang¹⁵, Kaiwen Huang²³, Zhongmin Peng²⁴, Yue Han11, Yong Jin²⁵, Guangyan Lei²⁶, Bo Zhai²⁷, Hailiang Li28, Jie Pan²⁹, **Dimitris** Filippiadis³⁰, Alexis Kelekis31, Uei Pua³², Balazs Futacsi³³, Yumchinserchin³⁴, Roberto Iezzi³⁵, Alex Tang36,

Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory

Shuvro H. Roy³⁷

Submitted: 24-Apr-2022 Revised: 09-May-2022 Accepted: 25-May-2022 Published: 27-Sep-2022 of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, Shandong, ¹Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, ²Department of Interventional Radiology, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Minhang, Shanghai, 3Department of Radiation Oncology, Peking University Third Hospital, Haidian, Beijing, ⁴Interventional Center, Jilin Provincial Cancer Hospital, Changchun, Jilin, ⁵Department of Oncology, Affiliated Fuda Cancer Hospital, Jinan University, China, Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, Department of Interventional Radiology, Hunan Cancer Hospital, Hunan, 8Department of Interventional Radiology, Zhongshan Hospital, Shanghai Medical College of Fudan University, Xuhui, Shanghai, Department of Thoracic Surgery, Xuan Wu Hospital Affiliated to Capital Medical University, Xicheng, Beijing, Department of Interventional Therapy, Jiangsu Cancer Hospital, Jiangsu, 11 Department of Interventional Therapy, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing, 12 Minimally Invasive Tumor Therapies Center, Beijing Hospital, Dongcheng, Beijing, 13 Department of Interventional Medicine, The Second Hospital of Shandong University, Jinan, Shandong, 14Department of Radiology, Qilu Hospital of Shandong University, Jinan, Shandong, 15 Department of Oncology, Shandong Provincial Hospital Afliated to Shandong First Medical University, Jinan, Shandong, 16 Department of Oncology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, 17 Interventionael and Vascular Surgery, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, 18Department of Intervention, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 19 Minimally Invasive Therapy Center, Fudan University Shanghai Cancer Center, Dongan, Shanghai, 20 Department of Oncology, Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, Chaoyang, 21Department of Interventional Therapy, Beijing Cancer Hospital, Haidian, Beijing, 22Department of Imaging, Affiliated Cancer Hospital of Shandong First Medical University, Jinan, Shandong, 23 Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Da'an District, Taipei, 24Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, ²⁵Interventionnal Therapy Department, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, ²⁶Department of Thoracic Surgery, Shanxi Provincial Cancer Hospital, Xinghualing, Taiyuan, 27Departments of Interventional Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Minhang, Shanghai, 28Department of Interventional Radiology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 29Department of Radiology, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing, China, 302nd Department of Radiology, Division of Interventional Radiology, Medical School, Attikon University General Hospital, National and Kapodistrian University of Athens, Athens, ³¹Radiology and Interventional Radiology at National and Kapodistrian University of Athens, Athens, Greece, ³²Department of Diagnostic Radiology, Tan Tock Seng Hospital, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 33Medical Imaging Centre, Semmelweis University, Budapest, Hungary, 34The Intervention Radiology Department at Mongolia's National Cancer Center, Mongolia, 35Interventional Radiology Consultant at Fondazione Policlinico A. Gemelli IRCCS, Rome, Lazio, Italia, 36 Vascular and Interventional Radiology Centre, Subang Jaya Medical Centre, Subang Jaya, Selangor, Malaysia, 37Choudhury Consultant in Diagnostic and Interventional Radiology, Naryana Health Group, India

For correspondence: Prof. Weijun Fan,

Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, China.

E-mail: fanwj@sysucc.org.cn

Prof. Xin Ye,

Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, Shandong, China.

E-mail: yexintaian2020@163.com

has promoted the development of the thermal ablation on treating lung tumors not only in China but also internationally. To further improve and standardize the technology of the thermal ablation on lung tumor treatment, the Expert Committee on Ablation Therapy of the Chinese Society of Clinical Oncology (CSCO), Expert Group on Tumor Ablation Therapy of the Chinese Medical Doctor Association, Tumor Ablation Therapy Committee of the Chinese Anti-Cancer Association, and Tumor Ablation Group of Chinese College of Interventionalists of Chinese Medical Doctors Association have invited well-known experts in the field from countries along the belt and road to discuss and amend the Clinical practice guidelines of IGTA for primary and metastatic lung tumors (2022 Edition), which aimed to provide a guideline to facilitate the accurate use of IGTA on treating primary and metastatic lung tumors in clinical practice. The level of evidence was based on the CSCO Guidelines Working Committee (http://www.csco.org.cn).

THERMAL ABLATION TECHNIQUES

With the emergence of irreversible electroporation,^[31-33] the concept of the tumor ablation has changed considerably. Thermal ablation is one of the energy-based ablation techniques used on treating tumors.^[34,35] As a precise minimally

invasive treatment technology, it utilizes biological effects of heat to directly cause irreversible injury or necrosis of tumor cells in one or more tumor lesions located in a certain organ. The thermal ablation techniques include radiofrequency ablation (RFA), microwave ablation (MWA), cryoablation, laser ablation, and high-intensity focused ultrasound (HIFU) ablation. [34-36] However, the HIFU ablation techniques are rarely used in the ablation of lung tumors.

RFA

RFA is one of the earliest ablation techniques used for the treatment of solid tumors. Inserting radiofrequency electrodes into the tumor tissue and applying alternating current with a frequency of 375–500 kHz can cause mutual friction and collisions of ions within the tumor tissue, which produces thermal biological effects that increase the local temperature up to $60-120^{\circ}$ C. When the tissue is heated to a temperature of $>60^{\circ}$ C, coagulative necrosis may occur. The RFA volume depends on the thermal conduction of local RFA and thermal convection between the circulating blood and extracellular fluid. [34-37]

MWA

MWA typically uses either 915 MHz or most commonly 2450 MHz frequencies. The water, protein, and other polar molecules

within tumor tissues vibrate at high speeds in a microwave electromagnetic field, which results in a collision and mutual friction between the molecules. The temperatures can be raised up to 60–150°C in a short time, leading to coagulative necrosis of the cells.[34-40] MWA has higher convection and lower "heat-sink" effect when compared to RFA. However, MWA still has the following challenges [34,37,41-44]: (1) up-to-date there are limited clinical data and experience because MWA is a relatively new technology; (2) a learning curve is associated with using MWA safely, which is because MWA has larger potential ablation zones compared with RFA; and (3) clinical systems are heterogeneous in terms of antenna design, wavelength, frequency, power, and cooling, which leads to different performance characteristics and confounds regarding the interpretation of clinical results and the predictability of results from different manufacturers' systems.

Cryoablation

Cryoablation systems for tumor necrosis most commonly utilize gases such as argon, argon-helium, or liquid nitrogen. Argon or agron-helium systems are based upon the Joule-Thomson theory, wherein high-pressure argon can cool the target tissue to -140°C and helium can increase the temperature of the target tissue rapidly from -140 to 20° C-- 40° C. On the other hand, liquid nitrogen can cool the target tissue to -196°C. The cryoablation technique can be used in clinical practice owing to the abovementioned changes in a temperature gradient, which leads to (1) protein denaturation in the target tissue, (2) cell lysis caused by the change of osmotic pressure inside and outside the cells and the "icing" effect, (3) tissue ischemia and necrosis caused by microembolization, and (4) release of tumor antigens and induction of antitumor immunity. The "ice ball" observed by computed tomography (CT) or magnetic resonance imaging (MRI) (0°C isotherm) can directly distinguish the ablating freezing zone from the tumor margin, which can help determine the margin of necrosis (lethal ice temperatures are measures 3-5 mm medially to the visible iceball margin, which actually measures 0°C).[34,45-48]

RFA, MWA, and cryoablation are commonly used ablation techniques in the clinical treatment of lung tumors; each ablation technique has its own advantages and disadvantages. The size and location of the target tumor, status of lung parenchyma, risk of complications, as well as expertise and skills of the professionals must be considered when choosing the appropriate ablation techniques. For tumors ≤ 3 cm in diameter, the three ablation modalities have remarkable curative effects. Multipolar RFA has good conformability and can be adjusted to protect adjacent organs, but it is more likely to be affected by blood flow and airflow. MWA has several potential advantages over RFA. First, MWA attains higher temperatures, larger ablation zones, and shorter ablation times compared with RFA. Second, MWA is less susceptible to the cooling effect of large blood vessels or airways, not limited by electric impedance. Third, MWA is less sensitive to tissue types and has more consistent results and is relatively

insensitive to "heat sinks" compared with RFA. Fourth, multiple MWA antennas can be positioned into the target tissue and activated simultaneously, which maximize the ablation zone size. Currently, RFA is the most commonly used technology in the clinical practice of lung tumor ablation, and physicians have more experience in using it. MWA likely to be used more widely in lung tumor ablation considering its outstanding advantages.[20,49-51] Cryoablation, although slower, is less painful and is ideal for the treatment of tumors along the pleura, chest wall, and bone metastases. Another major advantage of cryoablation is its ability to visualize the low-density ice balls on CT images and outline the exact size, shape as well as the location of the ablation zone. However, cryoablation consumes patients' platelets during ablation. Hence, it is not recommended for the patients with poor coagulation functions.[52]

Laser ablation

Laser ablation for lung tumors is used less frequently than the above mentioned ablation techniques. The most widely used laser ablation technique is the Nd:YAG laser (neodymium-doped yttrium aluminum garnet), which has a 1064-nm wavelength.[34] The principle is that after the laser being introduced into the tissue, the photons are absorbed by the chromophores, then instantly produce high heat, pressure, and other biological effects that degenerate, coagulate, vaporize, or even char tumor cells to kill them. Laser ablation has the following features^[53-56]: (1) both the areas of ablation (1.0 cm \times 0.5 cm) and damage to surrounding tissue are small; (2) ablation time is extremely short because the laser energy is released instantaneously; (3) optical fiber is so thin that it can hardly be detected on CT images, while often it can be introduced using a 21-gauge Chiba needle, thereby resulting in fewer complications (e.g., hemorrhage). Laser ablation is advantageous for treating tumors with a maximum diameter of <1.0 cm in the lung.

PROCEDURE PLATFORMS

Image guidance

Image guidance techniques for percutaneous thermal ablation therapy include CT, MRI, ultrasound, positron emission tomography (PET)/CT, and cone-beam (CB)/CT. CT is the most commonly used imaging guidance technique for lung tumor ablation, followed by MRI (level of evidence: 2).[30,34] Ultrasound can also guide the ablation of tumors near or attached to the chest wall that can be observed during the entire process. CB/CT is also used in some medical institutions.[57,58] PET/CT can be used for functional imaging but is less frequently used for imaging guidance in clinical practice (especially when pulmonary tumors are concerned).

Other guiding platforms

Thoracotomy or video-assisted thoracoscopic ablation is generally used for treating (1) lung tumors adjacent to vital structures such as large blood vessels, the pulmonary hilar, or heart; (2) lung tumors found to be unresectable after an open-chest operation.

Bronchoscopic and electromagnetic-guided thermal ablation of lung tumors also have exhibited some advantages. [59-61] Thoracotomy and bronchoscopic thermal ablation of lung tumors is not the focus of this guideline.

INDICATIONS AND CONTRAINDICATIONS

Indications for curative ablation

Curative ablation (A0) refers to the complete necrosis of lung tumors (i.e., complete eradication of all known tumor cells within the indexed tumors and absence of any other known tumor foci in the body). [30,40,62,63] Technical success of the ablation should be addressed per tumor and per procedure by evaluation of local tumor progression-free survival (PFS), time to local (tumor) progression, freedom from local or organ-specific recurrence, primary and secondary or assisted technique efficacy, residual disease, local progression (LP), recurrence rates, and local control.

Primary peripheral lung cancer (according to UICC 8th TNM staging system)^[30,64-71]: (1) stage IA, inability to tolerate surgical resection or SBRT due to poor cardiopulmonary function or advanced age (**level of evidence: 2**, Table 1]; (2) stage Ia, refusing to undergo surgical resection or SBRT (**level of evidence: 2**); (3) early primary lung cancer with local recurrence or solitary metastases after the surgery or radiotherapy (maximum tumor diameter ≤ 3 cm and no other metastases) (**level of evidence: 3**)^[72-75]; (4) single lung, with the absence of one lung for various reasons (maximum tumor diameter ≤ 3 cm and no other metastases) (**level of evidence: 3**)^[8,76-80]; and (5) multiple primary lung cancers (maximum tumor diameter ≤ 3 cm, unsuitable for surgical resection or SBRT, and no other metastatic lesions) (**level of evidence: 2**).^[70,81-84]

Fulfillment of one major criterion or at least two minor criteria generally indicate a patient with NSCLC who cannot tolerate surgical lobectomy.[70]

Table 1: Criteria for the intolerance of surgical resection

Major criteria FEV1≤50% DLCO≤50%

Minor criteria

Age≥75 years

FEV1 51-60% predicted

DLCO 51-60% predicted

Pulmonary hypertension (defined as a pulmonary artery systolic Pressure>40 mmHg) as estimated by echocardiography or right heart Catheterization

Poor left ventricular function (defined as an ejection fraction \leq 40%) Resting or exercise arterial PO $_2$ \leq 55 mmHg or SpO $_2$ \leq 88% PCO $_2$ >45 mmHg

FEV1: forced expiratory volume in 1s, DLCO: diffusing capacity of carbon monoxide, pO2: partial O2 pressure, SpO2: O2 saturation

Patients with the following special conditions and without proper histological tumor identification could also be considered for curative intent lung ablation: (1) high-risk factors (middle-aged and older patients, previous history of malignancy or family history of tumor, long-term history of smoking, or history of specific occupational exposure), (2) typical signs of malignancy on imaging (e.g., lesions ≥15 mm, spiculated sign, lobulated sign, pleural indentation, vacuole sign, and vessel convergence sign), (3) huge risk or difficulty in performing biopsy, and (4) patients refusing biopsy. If empiric therapy is considered without performing tissue-based confirmation, a multidisciplinary team (MDT) evaluation is necessary to make a preliminary diagnosis and treatment opinion. Final diagnosis and treatment opinions can be made by shared decision-making (SDM)[40,85,86] on the basis of MDT evaluation. If the outcome of SDM is direct ablation without biopsy or synchronous ablation and biopsy, then the medical staff and patient can follow instructions based on the outcome of SDM. SDM[87,88] is an important auxiliary treatment approach and an important component of evidence-based medicine that should be paid special attention as a new medical model.

Pulmonary metastases: certain biological features suggest a better prognosis for the curative ablation of intrapulmonary oligometastases (e.g., metastases due to breast cancer, sarcoma, kidney cancer, colorectal cancer, melanoma, and hepatocellular carcinoma) (level of evidence: 2).[17,89-93] If the primary disease can be effectively treated, IGTA can be performed for treating pulmonary oligometastases, and comprehensive treatment is necessarily followed by ablation. The maximum number and diameter of pulmonary metastases that may be ablated is still not clearly defined. Most centers prioritize patients with five or fewer pulmonary metastases (≤ 3 in unilateral lung lesions and ≤ 5 in bilateral lung lesions), multiple metastases in whom the maximum diameter of the tumor is ≤3 cm, and no metastases in other sites (level of evidence: 2).[16,18-26,30,71,94-98] For patients with bilateral pulmonary metastases, simultaneous bilateral ablation is not recommended (level of evidence: 3).[30,40]

INDICATIONS FOR PALLIATIVE ABLATION

The purpose of palliative thermal ablation is to relieve symptoms caused by the tumor, improve the patient's quality of life, and prolong life as much as possible. [30,63,99,100] It is better to decide the indications for palliative ablation after MDT discussion (level of evidence 2). For patients with a maximum tumor diameter of >5 cm or with >3 cm unilateral lung lesions (>5 cm for bilateral lung lesions), multiple applications at multiple sites in one session, application at multiple sites in multiple sessions, or combination with other treatment methods are required for completing the ablation (level of evidence 3). For refractory pain caused by tumor invasion into the ribs or vertebral body, ablation can be performed at the local bone invaded by the tumor (or combined

with other treatments such as the use of bone cement) so that analgesic effects can be achieved (level of evidence 2).[101-109]

Contraindications

IGTA is a local treatment technique that preserves the lung parenchyma, and patients with lung tumor can tolerate percutaneous IGTA treatment well. Although a temporary reduction in FEV₁ and DLCO may occur after ablation, recovery can reach the baseline levels with little or no effect on lung function.^[70,71] Therefore, except for uncorrectable coagulopathies, there are relatively few absolute contraindications for IGTA treating lung tumors.^[30,40,71,110,111]

Contraindications: (1) patients with severe hemorrhage tendency, with platelet count of $\leq 50 \times 10^9/L$, prothrombin time of >18 s, prothrombin activity of <40% (level of evidence 1); (2) patients with severe pulmonary fibrosis and pulmonary hypertension (level of evidence 3)[30,40,112]; (3) patients with infectious and radiological inflammation around the lesion, poorly controlled skin infection at the puncture site, systemic infection, and high fever (>38.5°C) (level of evidence 2); (4) patients with severe hepatic, renal, cardiac, pulmonary, and cerebral insufficiency (level of evidence 2); patients with severe anemia, dehydration, and severe nutritional and metabolic disorders that cannot be corrected or improved within a short time (within 2 weeks) (level of evidence 2); (5) patients with poorly controlled malignant pleural effusion (level of evidence 2); (6) patients who have used anticoagulants and antiplatelet drugs less than 5-7 days before ablation (level of evidence 3) or have used bevacizumab less than 15 days since the last administration (level of evidence 3)[30,40,113]; (7) patients with an Eastern Cooperative Oncology Group physical status score of >2 (level of evidence 2); (8) patients with combination of other tumors and extensive metastases with expected survival of <6 months (level of evidence 3); (9) patients with episodic mental disorders (level of evidence 3); and (10) patients with implanted pacemakers (RFA is not recommended for patients with implanted pacemakers) (level of evidence 3).[114-116]

PROCEDURE PREPARATION

Imaging

The indications and contraindications of IGTA should be evaluated by carefully reviewing the patient's medical history, physical examination, and recent imaging data. An MDT (thoracic surgery, medical oncology, radiotherapy, interventional radiology, diagnostic radiology, pneumology, etc.) should work together to determine the indications, make the individually personalized decision, and record the discussion of the procedure. Thoracic contrast-enhanced CT (within 2 weeks) is the key preprocedure imaging assessment. CT can observe the size and location of the tumor as well as its relationship with the vital organs, blood vessels, trachea, or bronchus. Relevant staging examinations such as bone scans and cerebral MRI should be performed. PET/CT scans are recommended if there is a need to exclude or detect

distant metastases. The pathological biopsy can be performed for mediastinal lymph nodes with suspected metastasis. For patients eligible for undergoing curative ablation, a PET/CT scan before procedure is recommended for accurate staging (level of evidence 3).[117-119]

Pathological and auxiliary examinations

Pathological examinations

For primary lung cancer, a percutaneous core biopsy of the lesion or fiber optic bronchoscopy should be performed for histological and molecular-pathological diagnosis confirmation of the tumor before performing the procedure (level of evidence 2). [120-126] For pulmonary metastases, a biopsy is usually not required if it shows typical metastatic features on imaging because the pathology of the primary tumor is well defined (level of evidence 3). However, if a second genetic test is needed or if multiple primary tumors are suspected, rebiopsy may be required after the MDT discussion. [30,71]

Auxiliary examinations

Auxiliary examinations may include routine blood, urine, and stool tests; coagulation function; liver and kidney function tests; blood glucose levels; tumor marker levels; blood type; electrocardiography; cardiac ultrasound or coronary CT (may be optional for senior patients). In patients with previous organ transplant minimally invasive therapies are paramount; therefore, auxiliary examinations play an even more important role in the preprocedure assessment.

Drugs and monitoring equipment

Drugs for anesthesia and analgesia, antitussives, hemostatics, vasodilators, and antihypertensives as well as rescue medicines and monitoring equipment should be prepared before the procedure.

Patient preparation

The patient and/or guardian are well informed of the benefits and potential risks of the various treatment methods, and the patient and/or entrustee signs the informed consent form. Patients and/or guardians should be involved in SDM when necessary. [40,8,87,127] The patient should fast for 4 h before local anesthesia or abstain from solid food for 12 h and liquids for 4 h before general anesthesia. The patient should also receive surgical skin preparation, take oral antitussive, and receive preprocedure education (such as breathing training) before the procedure. Dentures must be removed before the procedure.

ANESTHESIA AND DISINFECTION

Depending on the patient's condition, the ablation procedure could be conducted using general, sedation, or local anesthesia (level of evidence: 2). [30,40,71,128-131] The puncture site is locally anesthetized using 1–2% lidocaine up to the pleura. General anesthesia is recommended for children, patients who cannot cooperate during the procedure, patients who expect a long procedure time, and patients whose tumors are

close to the parietal pleura that may cause severe pain (unless cryoablation is performed in these locations). During the procedure, standard aseptic techniques should be strictly followed.

PROCEDURE

After choosing the appropriate ablation technique, CT is one of the most commonly used and accurate imaging guidance modalities. The procedure involves thermal ablation applicators (electrodes, antenna, probe, or fiber) that are directly punctured through the skin into the target tissue under CT guidance (percutaneous puncture is one of the core techniques: Appendix). Outpatient procedures are not recommended for lung tumors (level of evidence 3). The ablation procedure is presented in Figure. [30,40]

Planning

Preprocedure planning is critical for the success of the procedure, which mainly includes the following steps: (1) determining the gross tumor region (GTR), which can be defined by the imaging including the location, size, shape, and its relationship with adjacent organs; (2) selecting the appropriate body position and puncture site on the body surface; (3) determining the puncture path from the puncture site to the deepest border of the lesion (target skin distance); and (4) preliminarily determining ablation parameters technique and its parameters (number of applicators, applicators size and length, estimated procedure time and other modality specific settings).

Targeting

After the anesthesia, in accordance with the preoperatively planned GTR, the ablation applicators (electrodes, antenna, probe, or fiber) is used to puncture layer by layer along the preoperatively planned puncture path from the body surface puncture site to the GTR. The CT scans confirmed by the three-dimensional reconstructed image are applied to observe whether the ablation applicator punctures into the target ablation lesion (Appendix).

Ablation

Targeted tissue ablation can be conducted via multimodal depending on the size and location of the tumor (level of evidence 3): (1) at a single site and single session to achieve complete ablation (e.g., tumors diameter \leq 3 cm); (2) multisite ablation during one session (e.g., tumors diameter 3–5 cm); and (3) multiapplicator and multisite ablation during one session or multisession ablation (e.g., for tumors

with diameter >5 cm or for palliative ablation). The purpose of multimodal ablation is to achieve conformal ablation. Multimodal ablation has to be adjusted to individual tumor size, shape, or location and it also needs to consider patient's condition and their exhaustibility during and after the procedure. Furthermore, the ablation parameters (temperature, power, time, cycle, etc.) vary between different devices.

Monitoring

During the procedure, the applicator is monitored with CT scans to observe any off-target, whether the applicator should be adjusted, whether the preplanning region of ablation is achieved, or whether there are any complications (such as hemorrhage, pneumothorax, etc.). During the procedure, in the lung tissue adjacent to the tumor an opaque, high-density area can be seen, it is called ground glass opacity (GGO) and it reflects the thermal damage of the ablation. When the GGO around the GTR is greater than the GTR before ablation, the applicator can be pulled out. The target tissue at this point is defined as: postablation target zone (PTZ). During the procedure, the patient's breathing, pain, cough, and hemoptysis should be observed and treated symptomatically if necessary.

Intraprocedural modification

The physician can utilize the image-based information obtained during the monitor to modify the treatment as needed to control the procedure. Intraprocedural modification may simply reposition an applicator or adjust the ablation parameters based on physician's experience and imaging findings. Alternatively, it could be as sophisticated as a system that automatically terminates ablation at a critical point during the procedure.

Assessment of immediate treatment response

A repeat large-range (preferably whole-lung) CT scan should be carried out at the end of the procedure to assess immediate response with technical success and ablative margin. (1) Technical success: it addresses whether the tumor was treated according to the protocol and covered completely by PTZ. Tumor coverage can be assessed either during or immediately after the procedure. Thus, a tumor that is treated according to the protocol and determined to be covered completely at the time of the procedure is technically successful. [30,34] (2) Ablative margin: when ablation is performed with curative intent, assessment should demonstrate that the PTZ encompasses the GTR including a circumferential ablative margin (GGO) of at least 5 mm, and ideally 10 mm (level of evidence 2). [71,132-135] For palliative ablation, it is not necessary to achieve the

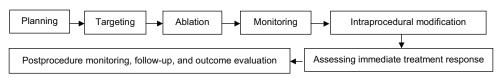


Figure: Ablation procedure

requirements of curative intent ablation in accordance with clinical practice, and it does not require an ablative margin, either (for refractory pain caused by tumor invasion of the ribs or thoracic vertebral body) (level of evidence 3). [30] (3) Identifying any complications: observe the occurrence and treatment of complications if necessary.

If the patient has normal blood pressure, heart rate, oxygen saturation, and has no hemoptysis, shortness of breath, chest tightness, chest pain, dyspnea, or other symptoms, they can return to the ward. If the vital signs are unstable, the patient should be admitted to the intensive care unit for observation according to their condition.

POSTPROCEDURE MONITORING

Monitoring vital signs for 12–24 h is recommended, and chest radiograph or CT scan should be performed after 24–48 h to investigate the occurrence of complications (such as asymptomatic pneumothorax or pleural effusion).

AUXILIARY TECHNIQUES

Fluid or gas can be injected between the target and nontarget tissues during ablation to separate them, which is useful for protecting vital nontarget tissues (e.g., the pleura, pericardium, mediastinum, great vessels, etc.) and reducing pain during ablation. These techniques mainly include artificial hydrothorax or artificial pneumothorax (level of evidence 3).[136-141]

CT-GUIDED PERCUTANEOUS LUNG TUMOR ABLATION PROTOCOL

Appendix.

FOLLOW-UP AND OUTCOME EVALUATION

Follow-up

Currently, contrast-enhanced chest CT is the standard method used for evaluating technique efficacy (level of evidence 2). A common protocol for surveillance imaging includes performing contrast-enhanced CT at 1, 2, 3, 6, 9, 12, 18, and 24 months; and every year thereafter [Table 2]. The use of PET/CT in combination with contrast-enhanced CT may provide a more accurate assessment of technique efficacy after ablation. Additionally, for patients with renal insufficiency or severe allergy to iodine contrast, a CT or MRI of the chest can be conducted to evaluate the efficacy according to the dynamic changes in tumor size and signal.

Postprocedure imaging features and response assessment *Local response by CT*

CT imaging features

Although most ablations conform to a spherical or ovoid shape, there are various factors that influence the shape of PTZ; these include the shape of the original tumor, the number of applicator, close proximity to pleura, and parameters of ablation. After the procedure, the PTZ continues to evolve into a denser air-space opacification and result in an area of consolidation larger than GTR of the original tumor. Even larger areas of consolidation, inflammation, and hemorrhage may coalesce to involve a whole segment or a large portion of the entire lobe. This imaging manifestation can last for 1-2 months, and this finding should not be mistaken for rapid tumor progression. [30,34,142-144] After ablation, CT imaging features include early-, intermediate-, and late-phase changes (level of evidence 2).[30,40,145-148] Early-phase changes occur within 1 month, and three layers are observed: (1) the first layer in which a solid, honeycomb-like or hypoattenuating-bubble structure is observed within the PTZ; (2) the second layer consisting of GGO, which should generally be at least 5 mm (ideally 10 mm) all around the tumor beyond the GTR border, indicating that the tumor has been ablated completely; and (3) the third or outer layer, there is a reaction zone outside the GGO layer, with the density slightly higher than the GGO.[30,142,144] This typical imaging characteristics are called fried eggs or cockade sign, which is more obvious at 24-72 h after ablation. Intermediate phase (from 1 to 3 months): most of the GGO and consolidation resolve, but the PTZ continues to be larger than the GTR. This should not be interpreted as tumor progression. Contrast-enhanced CT images should demonstrate no enhancement within the PTZ. A thin and smooth rind of enhancement may be present, which is known as the egg shell sign (a thin rim peripheral to PTZ, a relatively symmetric and uniform process with smooth inner margin, that can be measured 0.5–3 mm). Late phase (after 3 months): areas of hyperattenuation may be observed within the PTZ, and the size of the PTZ should be the same or slightly larger than the GTR. Over the next 3 months, the PTZ will undergo involution, continuously shrinking in size. By 6 months, the PTZ should be smaller than the GTR. Subsequent follow-up CT results of PTZ may present several different patterns: (1) involuting fibrosis; (2) cavities; (3) disappearance; (4) nodules; (5) pulmonary atelectasis; (6) enlargement (possible recurrence, progression, or hyperplastic fibrosis), etc. [30,142,144,148] The postcryoablation imaging changes are somewhat different compared with those of RFA and MWA. Nonetheless, all changes can be referred to by using the above mentioned change process.[149-152]

Table 2: Post-IGTA follow-up scheme

Pretreatment	1 month	3 months	6 months	9 months	12 months	18 months	24 months	Yearly
CE-CT	CE-CT	CE-CT	CE-CT	CE-CT PET/CT	CE-CT	CE-CT	CE-CT PET/CT*	CE-CT
PET/CT	PET/CT			PET/CT			PE1/C1"	

CE-CT: contrast-enhanced computed tomography; PET/CT: positron emission tomography/computed tomography. * In case of suspected tumor recurrence

Assessment of local response

After thermal ablation, the PTZ is significantly larger than the GTR of the original tumor due to bleeding, edema, exudation and inflammatory cell infiltration around the GTR, and such imaging findings last for 3–4 months. Therefore, the traditional response evaluation criteria in solid tumors are not suitable for the evaluation of local response after thermal ablation. The response is evaluated based on the lesions 4–6 weeks after the thermal ablation, including complete ablation (A0), incomplete ablation (A1), and LP (level of evidence 3). [8,30,40,71,110]

Complete ablation includes any one of the following patterns: (1) lesion disappears; (2) cavity completely forms; (3) fibrosis or scar (the most common); (4) solid nodule involution or no change, without contrast-enhanced signs on the CT and/or no FDG uptake on the PET/CT; and (5) atelectasis, lesion in atelectasis without contrast enhanced signs on the CT and/or no FDG uptake on the PET/CT.

Incomplete ablation includes any one of the following patterns: (1) cavity partially forms, with some solid parts or liquid components remaining, and with irregular peripheral or internal enhancement signs on the CT and/or intense FDG uptake on the PET/CT; (2) partial fibrosis, with solid residues in the fibrotic lesion, which presents as irregular peripheral or internal enhancement signs on CT and/or intense FDG uptake on the PET/CT; (3) solid nodules with no changed or increased size, which also present as irregular peripheral or internal enhancement signs on CT and/or intense FDG uptake on the PET/CT; and (4) atelectasis, lesion in atelectasis with contrast enhanced signs on the CT and/or intense FDG uptake on the PET/CT.

Local progression includes any one of the following patterns: (1) enlargement by 10 mm, with enlarged irregular or internal enhancement signs on the CT and/or enlarged intense FDG uptake on the PET/CT; (2) local newly developed lesion, with newly enhancement signs on the CT and/or newly developed intense FDG uptake on the PET/CT; and (3) biopsy shows the presence of tumor cells.

Local response assessment by PET/CT

PET/CT is one of the most accurate assessment methods of the local response after ablation, and it is useful for finding tumor residues, progression, recurrence, and distant metastasis (level of evidence 2). [153,154] PET/CT provides a high false-positive imaging features within 3 months after ablation because of the inflammatory response after ablation. Thus, PET/CT examination at this stage could be used to detect distant metastases and new lesions but has limited effect on determining whether there is local residue and progression. [155,156] PET/CT can objectively reflect the metabolic activity of the tumor in 3 months after ablation because of the reduction or regression of the inflammatory response in the ablation zone. If there is no FDG uptake in the tumor observed by PET/CT after ablation, then it indicates that the

tumor is completely ablated. If there is intense FDG uptake in the tumor observed by PET/CT after ablation, then it indicates tumor residue or progression caused by incomplete ablation or local tumor progression. A variety of patterns on the PET/CT image can reflect the metabolic activity of the tumor.^[157] Sometimes, it is difficult to determine whether the enlargement of the hilar or mediastinal lymph nodes is caused by metastasis or an inflammatory response. If there is no FDG uptake or significantly lower FDG uptake observed in the enlarged lymph node 3 months after ablation, then it indicates an inflammatory response and the opposite indicates metastasis.

Clinical outcome evaluation

Regular follow-up should be performed based on the assessment of local response. The following measurements should be assessed during the longitudinal follow-up: (1) data of technical success and early safety at minimum 6-month follow-up; (2) preliminary clinical outcomes at minimum 1-year follow-up; (3) intermediate-term data at minimum 3-year follow-up; and (4) long-term data at minimum 5-year follow-up. [158] Overall survival (OS) is the most important indicator for clinical outcome; therefore, OS of patients in 1 year and 2, 3, and 5 years are recorded. [159] For patients with palliative ablation, quantification of outcomes should be evaluated by assessment tools, such as quality of life indices and medication usage (e.g., morphine-equivalent doses).

COMPLICATIONS AND SIDE EFFECTS

Percutaneous lung tumor ablation is a relatively safe local therapy, despite this, complications are reported according to the classifications of the Cardiovascular and Interventional Radiological Society of Europe (CIRSE) criteria^[160] [Table 3]. According to the time of occurrence, the complications are classified into the following three types: (1) immediate complication (<24 h), (2) perioperative complication (24 h–30 days), and (3) delayed complications (>30 days).

Table 3: Definition and classification criteria of CIRSE complications

Grade Description

- 1 Complication during the procedure which could be solved within the same session; no additional therapy, no postprocedure sequelae, no deviation from the normal post therapeutic course
- Prolonged observation including overnight stay (as a deviation from the normal posttherapeutic course <48 h); no additional postprocedure therapy, no postprocedure sequelae
- Additional postprocedure therapy or prolonged hospital stay (>48 h)required; no postprocedure sequelae
- 4 Complication causing a permanent mild sequelae (resuming work and independent living)
- 5 Complication causing a permanent severe sequelae (requiring ongoing assistance in daily life)
- 6 Death

SIDE EFFECTS

Pain

Some patients experience mild to moderate peri-procedural pain during or immediately after the ablation. If the pain is severe during the procedure, the dosage of analgesics (such as sufentanyl) can be increased. Postprocedural pain is usually mild, which can last for several days. Pain can be managed with nonsteroidal antiinflammatory drugs (NSAIDs, such as flurbiprofen axetil).

Cough

Coughing is a common symptom during the procedure. Severe cough can aggravate pneumothorax or subcutaneous emphysema, or even cause ablation applicators "off target." Some patients might not be able to tolerate the procedure due to severe cough. Postprocedure cough is caused by inflammation of the tumor tissue necrosis and heat injury around the lung tissue. Oral codeine can prevent coughing if given 1 h before the procedure. The procedure will not be affected by a mild cough. For the postprocedure cough, antitussive and expectorant as well as the necessary antibiotics should be given as appropriate.

Postablation syndrome

Postablation syndrome may occur in about one-fourth of patients, which is caused by the absorption of necrotic material and release of inflammatory cytokines. This syndrome is a transient and self-limiting symptom/sign consisting of low-grade fever (<38.5°C), nausea, vomiting, and general malaise. NSAIDs and glucocorticoid can be applied for short-term if necessary.

Nonmassive hemoptysis

Due to the local reaction caused by puncturing intrapulmonary vessels with the ablation applicators or by ablation injury, some patients may have blood in the sputum or nonmassive hemoptysis after the procedure, which can cause panic in patients. The nonmassive hemoptysis is usually brief and self-limiting that does not require treatment.

COMPLICATIONS

Pneumothorax

Pneumothorax is the most common complication that occurs after ablation and has an incidence rate of 10–60%. [30,40,71,161,162] Pneumothorax is more commonly associated with the following conditions: emphysema, male, age >60 years, tumor <1.5 cm, tumor located in the lower lobe of the lung, puncturing a single lung tumor tissue for more than three times, use of multiple ablation electrodes (antennas, probes, or fiber optic), ablation of multiple tumor puncture sites for a high number of times, and long ablation routes through lung tissue or large interlobular fissures. [30,149,163,164] Most cases of pneumothorax are self-limiting or can be easily treated. Chest tube placement for drainage is available for pneumothorax

with >30% lung compression or patients with remarkable symptoms (level of evidence 3). [30,162,165] It has recently been reported that sealing the needle tract with a gelatin sponge after ablation can prevent and treat pneumothorax. [166] If the patient still has gas leakage after chest tube placement for drainage, then continuous negative pressure suction, pleural fixation, sclerosing agent injection, and endotracheal valve insertion can be performed (level of evidence 3). [167,168] Additionally, attention should be paid to the occurrence of delayed pneumothorax. Pneumothorax that occurs 72 h after ablation is generally considered as delayed pneumothorax. [169-171]

Pleural effusion

A small amount of pleural effusion is often seen after ablation (incidence rate: 1–60%). [30,40,172] The occurrence of pleural effusion is associated with increase in pleural temperatures during the procedure, which may indicate that pleural effusion is related to pleuritis induced by thermal injury. Significant risk factors for the development of pleural effusion are the use of a cluster applicator, distance <10 mm (from the tumor to the pleura), ablation of multiple lesions at one session, a decrease in the length of the aerated lung that is traversed by the applicator, and long ablation time. [118] Nevertheless, aseptic pleural effusion after ablation can usually be treated conservatively. For 1–7% of pleural effusion cases, chest tube placement for drainage is required (level of evidence 2). [173,174]

Hemorrhage

The incidence of hemorrhage during ablation is 3–8%.[30,175-177] Hemorrhage may present as hemoptysis, hemothorax, hemorrhagic shock, and acute respiratory failure but mainly as hemoptysis and hemothorax. (1) Hemoptysis: The incidence of massive hemoptysis during ablation is low. Risk factors for intraparenchymal hemorrhage include[30,40,177]: a. lesions with a diameter < 1.5 cm for which the applicator will be adjusted when inserting into small target lesions; b. occur of lesions in the middle and lower lung, where they are more easily influenced by respiratory movement and more difficult to puncture. In addition, blood vessels are more easily damaged by the movement of the applicator tip; c. the path of the applicator to penetrate the lung tissue is >2.5 cm, wherein these lesions are closer to the hilum and surrounded by large blood vessels; d. the pulmonary vessels are penetrated through the ablation path; e. prior radiation therapy. Approximately, 80% of pulmonary hemorrhage can be avoided by not passing the applicator through the blood vessels. The applicator can be inserted parallel to the blood vessels so that risk factors of pulmonary hemorrhage can be avoided; e. use of multipolar ablation applicator. If there is moderate hemoptysis, ablation should be performed immediately with intravenous administration of hemostatic drugs. Because ablation itself can induce blood coagulation, the hemorrhage will gradually stop during ablation. During puncture, larger blood vessels or atelectasis in lung tissue should be avoided.

Most cases of postprocedure hemoptysis are self-limiting and only last for 3–5 days. For patients who are not suitable to undergo conservative treatment, interventional embolization or thoracotomy can be performed. (2) Hemothorax: The internal thoracic artery, intercostal artery, or other arteries are damaged during puncture, which should be avoided. If there is hemothorax, the patient should be closely monitored and actively treated using conservative treatment. For unstable patients, interventional embolization or thoracotomy can be performed (level of evidence 3).^[30,40]

Infection

The incidence of lung infection caused by ablation is 1-6%.[30,162,165,172,178] However, patients with lung tumors especially NSCLC are primarily older patients who cannot tolerate surgical treatment and often have underlying pulmonary disorders wherein lung infection and inflammation can cause a dramatic decline in lung function and even death. Antibiotics can be administered prophylactically 30 min to 1 h before surgery and again within 24 h.[179] Administration duration can be extended to 48-72 h after ablation in the following cases: older patients aged >70 years, long-term chronic obstructive pulmonary emphysema, poorly controlled diabetes, tumors > 4 cm, more than three unilateral lung tumors, and immunocompromised patients (level of evidence 3). [30,40] If the body temperature is still >38.5°C at 5 days after the procedure, lung infection should be suspected. Antibiotic dose should be adjusted according to sputum, blood, or pus culture results. Pulmonary or chest abscesses can be drained using a chest tube. In addition, ablation increases the risk of secondary infection because interstitial pneumonia often occurs after radiotherapy.

Cavitation

Cavitation of the PTZ after lung ablation is common, which may be regarded as a natural consequence after the procedure but can lead to serious complications such as infection and hemorrhage. The incidence of the cavitation is about 14–17%. [30,161,180] Cavitation often appears 2–4 weeks after ablation and then gets absorbed as a shrinking fibrosis 2–4 months later. Tumors adjacent to the chest wall, excessive ablation, and tumors associated with emphysema are more likely to develop cavities. Cavitation infection and abscess formation should be considered when there is a fever and weakness. Additionally, the presence of *Aspergillus* infection should also be investigated. [181-184] Cavitation-induced recurrent hemorrhage can be treated using interventional embolization if patients are not suitable to undergo conservative treatment.

Other rare complications

There were rare cases of complications reported such as bronchial pleural fistula; acute respiratory distress syndrome; bronchiolitis obliterans organizing pneumonia; nontarget thermal injury or frostbite; rib fractures; cold shock; thrombocytopenia; needle tract seeding; injury of the brachial plexus, intercostal, phrenic, or laryngeal nerves; pulmonary

embolism; systemic air embolism; and pericardial tamponade. These cases should be treated individually.[30,171,185-194]

Ablation-related mortality

Although thermal ablation of lung tumors is generally safe, it may cause significant complications. Most complications can be treated conservatively or with minimal therapy. However, certain incidences of serious or even fatal complications have been reported. According to the current literature, the mortality rate associated with lung tumor ablation was reported to be 0–2.6%. [30,162] National (Nationwide) Inpatient Sample from United States reported an in-hospital mortality rate of 1.3% for 3344 cases of lung tumor ablation (level of evidence 2). [195] The main causes of death are as follows: various pneumonia (including fungal pneumonia), lung abscess, massive hemorrhage/massive hemoptysis (including pulmonary artery pseudoaneurysm rupture), bronchial pleural fistula, air embolism, and acute respiratory distress syndrome.

ABLATION IN COMBINATION WITH OTHER THERAPIES

The combination of ablation with other methods is one of the major directions of many current tumor studies, including the combination of ablation with surgery, radiotherapy, chemotherapy, molecular targeted agents, and immunotherapy, etc. (1) The combination of IGTA with radiotherapy can improve the local control rates of tumors and prolong the survival of patients without a substantial increase in side effects (level of evidence 3).[196,197] (2) For advanced-stage NSCLC, IGTA combined with chemotherapy provides some benefits such as improving local control rates of tumors and prolonging the survival of patients (level of evidence 2),[198-205] Therefore, this combination may be used as a new approach for treating advanced-stage NSCLC. (3) Tyrosine kinase inhibitors (TKIs) are currently one of the main approaches used for treating NSCLC with EGFR mutations or ALK-EML4 fusion mutations. The administration of TKIs in such patients can achieve an objective response rate of approximately 70% and PFS of approximately 10-19 months. However, most patients ultimately develop acquired resistance to TKIs after 1-1.5 years. Therefore, it is important to distinguish among these patterns as different therapeutic strategies may apply. Considering the growth rate of the tumor and the number of growing tumor lesions, progressive disease during TKI treatment can be generally distinguished into three patterns—intracranial disease progression, development of one or few distant metastatic sites while the patient remains asymptomatic, and systematic and/or symptomatic disease progression. The first two patterns fall into the general term of oligoprogressive disease. Typically, the definition of oligoprogressive disease refers to the presence of less than five discrete metastatic sites. Local ablation with continued EGFR inhibition has shown efficacy in treating patients with oligoprogressive disease and is associated with long PFS and OS. Local ablation with continued TKI treatment can be used as a treatment strategy for advanced-stage NSCLC in which extracentral nervous system oligoprogressive

disease has developed during EGFR TKI treatment. [30,70,206-213] (4) For patients with pulmonary metastases after ablation, systemic combination therapy, such as combined systemic chemotherapy, targeted therapy, or immunotherapy, must be administered according to patients' condition.

CONCLUSIONS

Minimally invasive therapy, especially IGTA technology, is one of the future directions of lung tumor treatment. For patients with early-stage NSCLC who cannot tolerate surgery, IGTA (for tumors with a diameter of 2–3 cm) may provide 1-, 3-, and 5-year survival rates of 97.4, 72.9, and 55.7%, respectively, with a mortality rate of <1%. [214] Additionally, IGTA has some advantages in treating lung cancer cases with GGO. [40,215] The 3-year OS of patients with pulmonary oligometastases from colorectal cancer treated with percutaneous IGTA can reach 82.2%. [16,23] Clinical evidence indicates that IGTA has become the third major local tumor treatment modality after surgery and radiotherapy, [70] and the use of IGTA in the comprehensive treatment of lung tumors is expected to increase in the future.

Currently, there are still some limitations associated with IGTA techniques used for treating primary and metastatic lung malignancies[162,216-220]: (1) IGTA has the potential to become one of the primary treatments; however, there is a lack of multicenter, randomized, prospective clinical studies on IGTA; (2) there are few clinical trials on the combination of IGTA with other treatment methods (such as radiotherapy, chemotherapy, and molecularly targeted therapy); (3) it is one of the future directions for improving the rate of complete local ablation and reducing local recurrence; (4) the role of palliative ablation in the comprehensive treatment of lung cancer still needs to be further explored; (5) more work needs to be done to search for new heat sources, develop hyperthermic sensitizers, and upgrade ablation equipment; and (6) basic research is relatively insufficient, such as the distribution of complex thermal fields and the effect on the body's immunity, and how to combine the IGTA technology with immunotherapy, which still need to be continuously explored in the future.

Financial support and sponsorship

The National Natural Science Foundation of China (No. 81901851 and No.82072028) and The Provincial Natural Science Foundation of China (No.ZR2020MH294) supported this study.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

 International Agency for Research on Cancer, WHO. Latest global cancer data: Cancer burden rises to 19.3 million new cases and 10.0 million cancer deaths in 2020. Available from: https://www. iarc.fr/faq/latest-global-cancer-data-2020-qa/. [Last accessed on

- 18 Apr 2021].
- Xia C, Dong X, Li H, Cao M, Sun D, He S, et al. Cancer statistics in China and United States, 2022: Profiles, trends, and determinants. Chin Med J (Engl) 2022;135:584-90.
- Thai AA, Solomon BJ, Sequist LV, Gainor JF, Heist RS. Lung cancer. Lancet 2021;398:535-54.
- Donington JS, Kim YT, Tong B, Moreira AL, Bessich J, Weiss KD, et al. Progress in the management of early-stage non-small cell lung cancer in 2017. J Thorac Oncol 2018;13:767-78.
- Tandberg DJ, Tong BC, Ackerson BG, Kelsey CR. Surgery versus stereotactic body radiation therapy for stage I non-small cell lung cancer: A comprehensive review. Cancer 2018;124:667-78.
- Amin SA, Alam M, Baine MJ, Meza JL, Bennion NR, Zhang C, et al.
 The impact of stereotactic body radiation therapy on the overall survival of patients diagnosed with early-stage non-small cell lung cancer. Radiother Oncol 2021;155:254-60.
- Bartl AJ, Mahoney M, Hennon MW, Yendamuri S, Videtic GMM, Stephans KL, et al. Systematic review of single-fraction stereotactic body radiation therapy for early stage non-small-cell lung cancer and lung oligometastases: How to stop worrying and love one and done. Cancers (Basel) 2022;14:790.
- Lencioni R, Crocetti L, Cioni R, Suh R, Glenn D, Regge D, et al. Response to radiofrequency ablation of pulmonary tumours: A prospective, intention-to-treat, multicentre clinical trial (the RAPTURE study). Lancet Oncol 2008;9:621-8.
- Chan MV, Huo YR, Cao C, Ridley L. Survival outcomes for surgical resection versus CT-guided percutaneous ablation for stage I non-small cell lung cancer (NSCLC): A systematic review and metaanalysis. Eur Radiol 2021;31:5421-33.
- Dupuy DE, Fernando HC, Hillman S, Ng T, Tan AD, Sharma A, et al.
 Radiofrequency ablation of stage IA non-small cell lung cancer
 in medically inoperable patients: Results from the American
 College of Surgeons Oncology Group Z4033 (Alliance) trial. Cancer
 2015;121:3491-8.
- Uhlig J, Ludwig JM, Goldberg SB, Chiang A, Blasberg JD, Kim HS. Survival rates after thermal ablation versus stereotactic radiation therapy for stage 1 non-small cell lung cancer: A national cancer database study. Radiology 2018;289:862-70.
- Wu J, Bai HX, Chan L, Su C, Zhang PJ, Yang L, et al. Sublobar resection compared with stereotactic body radiation therapy and ablation for early stage non-small cell lung cancer: A National Cancer Database study. J Thorac Cardiovasc Surg 2020;160:1350-7.e11.
- Lam A, Yoshida EJ, Bui K, Fernando D, Nelson K, Abi-Jaoudeh N. A national cancer database analysis of radiofrequency ablation versus stereotactic body radiotherapy in early-stage non-small cell lung cancer. J Vasc Interv Radiol 2018;29:1211-7.
- Yang Q, Luo LC, Li FM, Yi Q, Luo W. Survival outcomes of radiofrequency ablation compared with surgery in patients with early-stage primary non-small-cell lung cancer: A meta-analysis. Respir Investig 2022;60:337-44.
- Zeng C, Lu J, Tian Y, Fu X. Thermal ablation versus wedge resection for stage i non-small cell lung cancer based on the eighth edition of the TNM classification: A population study of the US SEER database. Front Oncol 2020;10:571684. doi: 10.3389/fonc. 2020.571684.
- Zhao H, Steinke K. Long-term outcome following microwave ablation of early-stage non-small cell lung cancer. J Med Imaging Radiat Oncol 2020;64:787-93.
- Gutiontov SI, Pitroda SP, Weichselbaum RR. Oligometastasis: Past, present, future. Int J Radiat Oncol Biol Phys 2020;108:530-8.
- Qi H, Fan W. Value of ablation therapy in the treatment of lung metastases. Thorac Cancer 2018;9:199-207.
- Zhong J, Palkhi E, Ng H, Wang K, Milton R, Chaudhuri N, et al. Long-term outcomes in percutaneous radiofrequency ablation for histologically proven colorectal lung metastasis. Cardiovasc Intervent Radiol 2020;43:1900-7.
- 20. Yuan Z, Wang Y, Zhang J, Zheng J, Li W. A meta-analysis of clinical

- outcomes after radiofrequency ablation and microwave ablation for lung cancer and pulmonary metastases. J Am Coll Radiol 2019;16:302-14.
- Prud'homme C, Deschamps F, Moulin B, Hakime A, Al-Ahmar M, Moalla S, et al. Image-guided lung metastasis ablation: A literature review. Int J Hyperthermia 2019;36:37-45.
- Gonnet A, Salabert L, Roubaud G, Catena V, Brouste V, Buy X, et al. Renal cell carcinoma lung metastases treated by radiofrequency ablation integrated with systemic treatments: Over 10 years of experience. BMC Cancer 2019;19:1182.
- Hasegawa T, Takaki H, Kodama H, Yamanaka T, Nakatsuka A, Sato Y, et al. Three-year survival rate after radiofrequency ablation for surgically resectable colorectal lung metastases: A prospective multicenter study. Radiology 2020;294:686-95.
- Delpla A, de Baere T, Varin E, Deschamps F, Roux C, Tselikas L. Role of thermal ablation in colorectal cancer lung metastases. Cancers (Basel) 2021;13:908. doi: 10.3390/cancers13040908.
- Tetta C, Carpenzano M, Algargoush ATJ, Algargoosh M, Londero F, Maessen JG, et al. Non-surgical treatments for lung metastases in patients with soft tissue sarcoma: Stereotactic body radiation therapy (SBRT) and radiofrequency ablation (RFA). Curr Med Imaging 2021;17:261-75.
- Antonoff MB, Sofocleous CT, Callstrom MR, Nguyen QN. The roles of surgery, stereotactic radiation, and ablation for treatment of pulmonary metastases. J Thorac Cardiovasc Surg 2022;163:495-502.
- 27. Ye X, Fan W, Minimally Invasive and Comprehensive Treatment of Lung Cancer Branch, Professional Committee of Minimally Invasive Treatment of Cancer, Chinese Anti-Cancer Association. [Expert consensus for thermal ablation of primary and metastatic lung tumors]. Zhongguo Fei Ai Za Zhi 2014;17:294-301.
- Ye X, Fan W, Wang H, Wang J, Gu S, Feng W, et al. [Expert Consensus for Thermal Ablation of Primary and Metastatic Lung Tumors (2017 Edition)]. Zhongguo Fei Ai Za Zhi 2017;20:433-45.
- Ye X, Fan W, Chen JH, Feng WJ, Gu SZ, Han Y, et al. Chinese expert consensus workshop report: Guidelines for thermal ablation of primary and metastatic lung tumors. Thorac Cancer 2015;6:112-21.
- Ye X, Fan W, Wang H, Wang J, Wang Z, Gu S, et al. Expert consensus workshop report: Guidelines for thermal ablation of primary and metastatic lung tumors (2018 edition). J Cancer Res Ther 2018;14:730-44.
- Rubinsky B. Irreversible electroporation in medicine. Technol Cancer Res Treat 2007;6:255-60.
- Wei Y, Xiao Y, Wang Z, Hu X, Chen G, Ding X, et al. Chinese expert consensus of image-guided irreversible electroporation for pancreatic cancer. J Cancer Res Ther 2021;17:613-8.
- Llovet JM, De Baere T, Kulik L, Haber PK, Greten TF, Meyer T, et al. Locoregional therapies in the era of molecular and immune treatments for hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 2021;18:293-313.
- Ahmed M, Solbiati L, Brace CL, Breen DJ, Callstrom MR, Charboneau JW, et al. Image-guided tumor ablation: Standardization of terminology and reporting criteria--a 10-year update. Radiology 2014;273:241-60.
- Lencioni R, de Baere T, Martin RC, Nutting CW, Narayanan G. Imageguided ablation of malignant liver tumors: Recommendations for clinical validation of novel thermal and non-thermal technologies

 A western perspective. Liver Cancer 2015;4:208-14.
- Knavel EM, Brace CL. Tumor ablation: Common modalities and general practices. Tech Vasc Interv Radiol 2013;16:192-200.
- Bailey CW, Sydnor MK Jr. Current state of tumor ablation therapies.
 Dig Dis Sci 2019;64:951-8.
- Ward RC, Healey TT, Dupuy DE. Microwave ablation devices for interventional oncology. Expert Rev Med Devices 2013;10:225-38.
- Abbas G. Microwave ablation. Semin Thorac Cardiovasc Surg 2011:23:81-3
- 40. Ye X, Fan W, Wang Z, Wang J, Wang H, Wang J, et al. Expert consensus

- on thermal ablation therapy of pulmonary subsolid nodules (2021 Edition). J Cancer Res Ther 2021;17:1141-56.
- Abbas G, Pennathur A, Landreneau RJ, Luketich JD. Radiofrequency and microwave ablation of lung tumors. J Surg Oncol 2009;100:645-50.
- Fan W, Li X, Zhang L, Jiang H, Zhang J. Comparison of microwave ablation and multipolar radiofrequency ablation in vivo using two internally cooled probes. AJR Am J Roentgenol 2012;198:W46-50.
- Andreano A, Huang Y, Meloni MF, Lee FT Jr, Brace C. Microwaves create larger ablations than radiofrequency when controlled for power in ex vivo tissue. Med Phys 2010;37:2967-73.
- Crocetti L, Bozzi E, Faviana P, Cioni D, Della Pina C, Sbrana A, et al.
 Thermal ablation of lung tissue: In vivo experimental comparison of microwave and radiofrequency. Cardiovasc Intervent Radiol 2010;33:818-27.
- Chu KF, Dupuy DE. Thermal ablation of tumours: Biological mechanisms and advances in therapy. Nat Rev Cancer 2014;14:199-208.
- Baust JG, Gage AA, Bjerklund Johansen TE, Baust JM. Mechanisms of cryoablation: Clinical consequences on malignant tumors. Cryobiology 2014;68:1-11.
- Yang W, An Y, Li Q, Liu C, Zhu B, Huang Q, et al. Co-ablation versus cryoablation for the treatment of stage III-IV non-small cell lung cancer: A prospective, noninferiority, randomized, controlled trial (RCT). Thorac Cancer 2021;12:475-83.
- Yakkala C, Denys A, Kandalaft L, Duran R. Cryoablation and immunotherapy of cancer. Curr Opin Biotechnol 2020;65:60-4.
- Palussière J, Catena V, Buy X. Percutaneous thermal ablation of lung tumors-Radiofrequency, microwave and cryotherapy: Where are we going? Diagn Interv Imaging 2017;98:619-25.
- Aufranc V, Farouil G, Abdel-Rehim M, Smadja P, Tardieu M, Aptel S, et al. Percutaneous thermal ablation of primary and secondary lung tumors: Comparison between microwave and radiofrequency ablation. Diagn Interv Imaging 2019;100:781-91.
- Bourgouin PP, Wrobel MM, Mercaldo ND, Murphy MC, Leppelmann KS, Levesque VM, et al. Comparison of percutaneous image-guided microwave ablation and cryoablation for sarcoma lung metastases: A 10-year experience. AJR Am J Roentgenol 2022;218:494-504.
- Shi J, Niu L, Huang Z, Mu F, Chen J, Li J, et al. Diagnosis and treatment of coagulopathy following percutaneous cryoablation of liver tumors: Experience in 372 patients. Cryobiology 2013;67:146-50.
- Ritz JP, Lehmann KS, Mols A, Frericks B, Knappe V, Buhr HJ, et al. Laser-induced thermotherapy for lung tissue--evaluation of two different internally cooled application systems for clinical use. Lasers Med Sci 2008;23:195-202.
- Rosenberg C, Puls R, Hegenscheid K, Kuehn J, Bollman T, Westerholt A, et al. Laser ablation of metastatic lesions of the lung: Long-term outcome. AJR Am J Roentgenol 2009;192:785-92.
- Weigel C, Rosenberg C, Langner S, Fröhlich CP, Hosten N. Laser ablation of lung metastases: Results according to diameter and location. Eur Radiol 2006;16:1769-78.
- 56. Vogl TJ, Eckert R, Naguib NN, Beeres M, Gruber-Rouh T, Nour-Eldin NA. Thermal ablation of colorectal lung metastases: Retrospective comparison among laser-induced thermotherapy, radiofrequency ablation, and microwave ablation. AJR Am J Roentgenol 2016;207:1340-9.
- Li XQ, Zhang Y, Huang DB, Zhang J, Zhang GS, Wen ZX, et al. Value of C-arm computed tomography in radiofrequency ablation of small lung lesions. Genet Mol Res 2014;13:6027-36.
- Amouyal G, Pernot S, Déan C, Cholley B, Scotté F, Sapoval M, et al. Percutaneous radiofrequency ablation of lung metastases from colorectal carcinoma under C-arm cone beam CT guidance. Diagn Interv Imaging 2017;98:793-9.
- Steinfort DP, Herth FJF. Bronchoscopic treatments for early-stage peripheral lung cancer: Are we ready for prime time? Respirology 2020;25:944-952.
- 50. Zeng C, Fu X, Yuan Z, Hu S, Wang X, Ping W, et al. Application

- of electromagnetic navigation bronchoscopy-guided microwave ablation in multiple pulmonary nodules: A single-centre study. Eur J Cardiothorac Surg 2022:ezac071. doi: 10.1093/ejcts/ezac071.
- 61. Chan JWY, Lau RWH, Ngai JCL, Tsoi C, Chu CM, Mok TSK, *et al.*Transbronchial microwave ablation of lung nodules with electromagnetic navigation bronchoscopy guidance-a novel technique and initial experience with 30 cases. Transl Lung Cancer Res 2021;10:1608-22.
- 62. Palussière J, Cazayus M, Cousin S, Cabart M, Chomy F, Catena V, et al. Is there a role for percutaneous ablation for early stage lung cancer? What is the evidence? Curr Oncol Rep 2021;23:81.
- Lin M, Eiken P, Blackmon S. Image guided thermal ablation in lung cancer treatment. J Thorac Dis 2020;12:7039-47.
- 64. Howington JA, Blum MG, Chang AC, Balekian AA, Murthy SC. Treatment of stage I and II non-small cell lung cancer: Diagnosis and management of lung cancer, 3rd ed: American college of chest physicians evidence-based clinical practice guidelines. Chest 2013;143 (5 Suppl):e278S-e313S.
- Detterbeck FC, Boffa DJ, Kim AW, Tanoue LT. The eighth edition lung cancer stage classification. Chest 2017;151:193-203.
- 66. Postmus PE, Kerr KM, Oudkerk M, Senan S, Waller DA, Vansteenkiste J, et al. Early and locally advanced non-small-cell lung cancer (NSCLC): ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2017;28(suppl 4):iv1-iv21.
- 67. Yang X, Ye X, Zheng A, Huang G, Ni X, Wang J, *et al.* Percutaneous microwave ablation of stage I medically inoperable non-small cell lung cancer: Clinical evaluation of 47 cases. J Surg Oncol 2014;110:758-63.
- 68. Ni Y, Huang G, Yang X, Ye X, Li X, Feng Q, et al. Microwave ablation treatment for medically inoperable stage I non-small cell lung cancers: Long-term results. Eur Radiol 2022. doi: 10.1007/s00330-022-08615-8.
- 69. Han X, Yang X, Huang G, Li C, Zhang L, Qiao Y, et al. Safety and clinical outcomes of computed tomography-guided percutaneous microwave ablation in patients aged 80 years and older with earlystage non-small cell lung cancer: A multicenter retrospective study. Thorac Cancer 2019;10:2236-42.
- NCCN Guidelines Non-small cell lung cancer: Version 4. 2021.
 Available from: https://www.nccn.org/professionals/physician_gls/pdf/nscl blocks.pdf.
- Venturini M, Cariati M, Marra P, Masala S, Pereira PL, Carrafiello G.
 CIRSE standards of practice on thermal ablation of primary and
 secondary lung tumours. Cardiovasc Intervent Radiol 2020;43:667 83.
- Leung VA, DiPetrillo TA, Dupuy DE. Image-guided tumor ablation for the treatment of recurrent non-small cell lung cancer within the radiation field. Eur J Radiol 2011;80:e491-9.
- Miller DA, Krasna MJ. Local therapy indications in the management of patients with oligometastatic non-small cell lung cancer. Surg Oncol Clin N Am 2016;25:611-20.
- Kim C, Hoang CD, Kesarwala AH, Schrump DS, Guha U, Rajan A. Role of local ablative therapy in patients with oligometastatic and oligoprogressive non-small cell lung cancer. J Thorac Oncol 2017;12:179-93.
- Ni Y, Peng J, Yang X, Wei Z, Zhai B, Chi J, Li X, Ye X. Multicentre study of microwave ablation for pulmonary oligorecurrence after radical resection of non-small-cell lung cancer. Br J Cancer 2021;125:672-8.
- Hess A, Palussière J, Goyers JF, Guth A, Aupérin A, de Baère T. Pulmonary radiofrequency ablation in patients with a single lung: Feasibility, efficacy, and tolerance. Radiology 2011;258:635-42.
- Ambrogi MC, Fanucchi O, Lencioni R, Cioni R, Mussi A. Pulmonary radiofrequency ablation in a single lung patient. Thorax 2006:61:828-9.
- Modesto A, Giron J, Massabeau C, Sans N, Berjaud J, Mazieres J. Radiofrequency ablation for non-small-cell lung cancer in a single-lung patient: Case report and review of the literature. Lung

- Cancer 2013;80:341-3.
- Sofocleous CT, May B, Petre EN, Gonen M, Thornton RH, Alago W, et al.
 Pulmonary thermal ablation in patients with prior pneumonectomy.
 AJR Am J Roentgenol 2011;196:W606-12.
- Yang X, Ye X, Zhang L, Geng D, Du Z, Yu G, et al. Microwave ablation for lung cancer patients with a single lung: Clinical evaluation of 11 cases. Thorac Cancer 2018;9:548-54.
- Huang G, Yang X, Li W, Wang J, Han X, Wei Z, et al. A feasibility and safety study of computed tomography-guided percutaneous microwave ablation: A novel therapy for multiple synchronous ground-glass opacities of the lung. Int J Hyperthermia 2020;37:414-22.
- Xue G, Li Z, Wang G, Wei Z, Ye X. Computed tomography-guided percutaneous microwave ablation for pulmonary multiple groundglass opacities. J Cancer Res Ther 2021;17:811-3.
- Liu B, Ye X. Management of pulmonary multifocal ground-glass nodules: How many options do we have? J Cancer Res Ther 2020;16:199-202.
- 84. Tafti BA, Genshaft S, Suh R, Abtin F. Lung ablation: Indications and techniques. Semin Intervent Radiol 2019;36:163-75.
- Austin CA, Mohottige D, Sudore RL, Smith AK, Hanson LC. Tools to promote shared decision making in serious illness: A systematic review. JAMA Intern Med 2015;175:1213-21.
- Nishi SPE, Lowenstein LM, Mendoza TR, Lopez Olivo MA, Crocker LC, Sepucha K, et al. Shared decision-making for lung cancer screening: How well are we "sharing"? Chest 2021;160:330-40.
- Stiggelbout AM, Pieterse AH, De Haes JC. Shared decision making: Concepts, evidence, and practice. Patient Educ Couns 2015;98:1172-9.
- Rivera MP, Henderson LM. Lung cancer screening and shared decision making in cancer survivors: The long and winding road. Transl Lung Cancer Res 2019. 8: 119-23.
- Weichselbaum RR, Hellman S. Oligometastases revisited. Nat Rev Clin Oncol 2011;8:378-82.
- 90. Guckenberger M, Lievens Y, Bouma AB, Collette L, Dekker A, deSouza NM, et al. Characterisation and classification of oligometastatic disease: A European society for radiotherapy and oncology and European organisation for research and treatment of cancer consensus recommendation. Lancet Oncol 2020;21:e18-28.
- Lang P, Gomez DR, Palma DA. Local ablative therapies in oligometastatic NSCLC: New data and new directions. Semin Respir Crit Care Med 2020;41:369-76.
- Li X, Gomez D, Iyengar P. Local ablative therapy in oligometastatic NSCLC. Semin Radiat Oncol 2021;31:235-41.
- 93. Hafez N, Gettinger S. Oligometastatic disease and local therapies: A medical oncology perspective. Cancer J 2020;26:144-8.
- Cheung FP, Alam NZ, Wright GM. The past, present and future of pulmonary metastasectomy: A review article. Ann Thorac Cardiovasc Surg 2019;25:129-41.
- Omae K, Hiraki T, Gobara H, Iguchi T, Fujiwara H, Matsui Y, et al. Longterm survival after radiofrequency ablation of lung oligometastases from five types of primary lesions: A retrospective evaluation. J Vasc Interv Radiol 2016;27:1362-70.
- 96. de Baere T, Tselikas L, Yevich S, Boige V, Deschamps F, Ducreux M, et al. The role of image-guided therapy in the management of colorectal cancer metastatic disease. Eur J Cancer 2017;75:231-42.
- Ni Y, Ye X, Yang X, Huang G, Li W, Wang J, et al. Microwave ablation for non-small cell lung cancer with synchronous solitary extracranial metastasis. J Cancer Res Clin Oncol 2020;146:1361-7.
- Meng M, Han X, Li W, Huang G, Ni Y, Wang J, et al. CT-guided microwave ablation in patients with lung metastases from breast cancer. Thorac Cancer 2021;12:3380-6.
- Niu L, Zhou L, Xu K, Mu F. The role of cryosurgery in palliative care for cancer. Ann Palliat Med 2013;2:26-34.
- Masuda E, Sista AK, Pua BB, Madoff DC. Palliative procedures in lung cancer. Semin Intervent Radiol 2013;30:199-205.
- 101. Guenette JP, Lopez MJ, Kim E. Solitary painful osseous metastases:

- Correlation of imaging features with pain palliation after radiofrequency ablation-a multicenter American college of radiology imaging network study. Radiology 2013;268:907-15.81.
- 102. Al-Tariq QZ. Percutaneous strategies for the management of pulmonary parenchymal, chest wall, and pleural metastases. AJR Am J Roentgenol 2014;203:709-16.
- 103. Wei Z, Zhang K, Ye X, Yang X, Zheng A, Huang G, et al. Computed tomography-guided percutaneous microwave ablation combined with osteoplasty for palliative treatment of painful extraspinal bone metastases from lung cancer. Skeletal Radiol 2015;44:1485-90.
- 104. Levy J, Hopkins T, Morris J, Tran ND, David E, Massari F, et al. Radiofrequency ablation for the palliative treatment of bone metastases: Outcomes from the multicenter OsteoCool tumor ablation post-market study (OPuS one study) in 100 patients. J Vasc Interv Radiol 2020;31:1745-52.
- 105. Zhou X, Li H, Qiao Q, Pan H, Fang Y. CT-guided percutaneous minimally invasive radiofrequency ablation for the relief of cancer related pain from metastatic non-small cell lung cancer patients: A retrospective study. Ann Palliat Med 2021;10:1494-502.
- Scandiffio R, Bozzi E, Ezeldin M, Capanna R, Ceccoli M, Colangeli S, et al. Image-guided cryotherapy for musculoskeletal tumors. Curr Med Imaging 2021;17:166-178.
- 107. Baldes N, Eberlein M, Bölükbas S. Multimodal and palliative treatment of patients with pulmonary metastases. J Thorac Dis 2021;13:2686-91.
- 108. Qiu YY, Zhang KX, Ye X, Zhang XS, Xing C, Wu QS, et al. Combination of microwave ablation and percutaneous osteoplasty for treatment of painful extraspinal bone metastasis. J Vasc Interv Radiol 2019;30:1934-40
- 109. Zhang X, Ye X, Zhang K, Qiu Y, Fan W, Yuan Q, et al. Computed tomography-guided microwave ablation combined with osteoplasty for the treatment of bone metastases: A multicenter clinical study. J Vasc Interv Radiol 2021;32:861-8.
- 110. Iezzi R, Cioni R, Basile D, Tosoratti N, Posa A, Busso M, *et al.* Standardizing percutaneous microwave ablation in the treatment of lung tumors: A prospective multicenter trial (MALT study). Eur Radiol 2021;31:2173-82.
- 111. Najafi A, Baere T, Madani K, Al-Ahmar M, Roux C, Delpla A, et al. Lung ablation-How i do it. Tech Vasc Interv Radiol 2020;23:100673. doi: 10.1016/j.tvir. 2020.100673.
- 112. Liu BD, Ye X, Fan WJ, Li XG, Feng WJ, Lu Q, et al. Expert consensus on image-guided radiofrequency ablation of pulmonary tumors: 2018 edition. Thorac Cancer 2018;9:1194-208.
- 113. Patel IJ, Rahim S, Davidson JC, Hanks SE, Tam AL, Walker TG, et al. Society of interventional radiology consensus guidelines for the periprocedural management of thrombotic and bleeding risk in patients undergoing percutaneous image-guided interventions-part II: Recommendations: Endorsed by the Canadian association for interventional radiology and the cardiovascular and interventional radiological society of Europe. J Vasc Interv Radiol 2019;30:1168-84.
- 114. Donohoo JH, Anderson MT, Mayo-Smith WW. Pacemaker reprogramming after radiofrequency ablation of a lung neoplasm. AJR Am J Roentgenol 2007;189:890-2.
- Skonieczki BD, Wells C, Wasser EJ, Dupuy DE. Radiofrequency and microwave tumor ablation in patients with implanted cardiac devices: Is it safe? Eur J Radiol 2011;79:343-6.
- 116. Hidalgo A, Guerra JM, Gallego O, Franquet T. Ablación mediante microondas de metástasis pulmonar de sarcoma en paciente portador de marcapasos [Microwave ablation of a sarcoma lung metastasis in a patient with a pacemaker]. Radiologia 2014;56:171-4. Spanish.
- 117. Shim SS, Lee KS, Kim BT, Chung MJ, Lee EJ, Han J, et al. Non-small cell lung cancer: Prospective comparison of integrated FDG PET/CT and CT alone for preoperative staging. Radiology 2005;236:1011-9.
- 118. Vansteenkiste J, Crinò L, Dooms C, Douillard JY, Faivre-Finn C, Lim E, $et\ al.\ 2^{nd}$ ESMO Consensus Conference on Lung Cancer: Early-stage

- non-small-cell lung cancer consensus on diagnosis, treatment and follow-up. Ann Oncol 2014;25:1462-74.
- 119. Suh YJ, Park CM, Han K, Jeon SK, Kim H, Hwang EJ, et al. Utility of FDG PET/CT for preoperative staging of non-small cell lung cancers manifesting as subsolid nodules with a solid portion of 3 cm or smaller. AJR Am J Roentgenol 2020;214:514-23.
- 120. Chi J, Ding M, Wang Z, Hu H, Shi Y, Cui D, et al. Pathologic diagnosis and genetic analysis of sequential biopsy following coaxial lowpower microwave thermal coagulation for pulmonary ground-glass opacity nodules. Cardiovasc Intervent Radiol 2021;44:1204-13.
- 121. Liu J, Huang W, Wu Z, Wang Z, Ding X. The application of computed tomography-guided percutaneous coaxial biopsy combined with microwave ablation for pulmonary tumors. J Cancer Res Ther 2019;15:760-5.
- 122. Wang D, Li B, Bie Z, Li Y, Li X. Synchronous core-needle biopsy and microwave ablation for highly suspicious malignant pulmonary nodule via a coaxial cannula. J Cancer Res Ther 2019;15:1484-9.
- 123. Hasegawa T, Kondo C, Sato Y, Inaba Y, Yamaura H, Kato M, et al. Pathologic diagnosis and genetic analysis of a lung tumor needle biopsy specimen obtained immediately after radiofrequency ablation. Cardiovasc Intervent Radiol 2018;41:594-602.
- 124. Wang J, Ni Y, Yang X, Huang G, Wei Z, Li W, *et al*. Diagnostic ability of percutaneous core biopsy immediately after microwave ablation for lung ground-glass opacity. J Cancer Res Ther 2019;15:755-9.
- 125. Li X, Ye X. Computed tomography-guided percutaneous core-needle biopsy after thermal ablation for lung ground-glass opacities: Is the method sound? J Cancer Res Ther 2019;15:1427-9.
- 126. Kong F, Wang C, Li Y, Li X. Advances in study of the sequence of lung tumor biopsy and thermal ablation. Thorac Cancer 2021;12:279-86.
- 127. Brenner AT, Malo TL, Margolis M, Elston Lafata J, James S, Vu MB, et al. Evaluating shared decision making for lung cancer screening. JAMA Intern Med 2018;178:1311-6.
- 128. Hoffmann RT, Jakobs TF, Lubienski A, Schrader A, Trumm C, Reiser MF, et al. Percutaneous radiofrequency ablation of pulmonary tumorsis there a difference between treatment under general anaesthesia and under conscious sedation? Eur J Radiol 2006;59:168-74.
- 129. Pouliquen C, Kabbani Y, Saignac P, Gékière JP, Palussière J. Radiofrequency ablation of lung tumours with the patient under thoracic epidural anaesthesia. Cardiovasc Intervent Radiol 2011;34 Suppl 2:S178-81.
- 130. Chung DY, Tse DM, Boardman P, Gleeson FV, Little MW, Scott SH, et al. High-frequency jet ventilation under general anesthesia facilitates CT-guided lung tumor thermal ablation compared with normal respiration under conscious analgesic sedation. J Vasc Interv Radiol 2014;25:1463-9.
- 131. Miyazaki M, Iguchi T, Takaki H, Yamanaka T, Tamura Y, Tokue H, et al. Ablation protocols and ancillary procedures in tumor ablation therapy: Consensus from Japanese experts. Jpn J Radiol 2016;34:647-56
- Ahmed M, Brace CL, Lee FT Jr, Goldberg SN. Principles of and advances in percutaneous ablation. Radiology 2011;258:351-69.
- 133. Wang X, Sofocleous CT, Erinjeri JP, Petre EN, Gonen M, Do KG, *et al.*Margin size is an independent predictor of local tumor progression after ablation of colon cancer liver metastases. Cardiovasc Intervent Radiol 2013;36:166-75.
- 134. An C, Jiang Y, Huang Z, Gu Y, Zhang T, Ma L, *et al*. Assessment of ablative margin after microwave ablation for hepatocellular carcinoma using deep learning-based deformable image registration. Front Oncol 2020;10:573316. doi: 10.3389/fonc. 2020.573316.
- 135. Yan P, Tong AN, Nie XL, Ma MG. Assessment of safety margin after microwave ablation of stage I NSCLC with three-dimensional reconstruction technique using CT imaging. BMC Med Imaging 2021:21:96.
- 136. Yang X, Zhang K, Ye X, Zheng A, Huang G, Li W, et al. Artificial pneumothorax for pain relief during microwave ablation of subpleural lung tumors. Indian J Cancer 2015;52 Suppl 2:e80-3.

- 137. Jia H, Tian J, Liu B, Meng H, Pan F, Li C. Efficacy and safety of artificial pneumothorax with position adjustment for CT-guided percutaneous transthoracic microwave ablation of small subpleural lung tumors. Thorac Cancer 2019;10:1710-6.
- 138. Hou X, Zhuang X, Zhang H, Wang K, Zhang Y. Artificial pneumothorax: A safe and simple method to relieve pain during microwave ablation of subpleural lung malignancy. Minim Invasive Ther Allied Technol 2017;26:220-6.
- 139. April Chia YJ, Damodharan K, Eddy Saw KM. Combined utility of one lung ventilation and artificial pneumothorax in thermal ablation of hepatic dome tumor: A technical note. Diagn Interv Radiol 2021;27:564-6.
- 140. Hermida M, Cassinotto C, Piron L, Assenat E, Pageaux GP, Escal L, et al. Percutaneous thermal ablation of hepatocellular carcinomas located in the hepatic dome using artificial carbon dioxide pneumothorax: Retrospective evaluation of safety and efficacy. Int J Hyperthermia 2018;35:90-6.
- 141. Zuo T, Lin W, Liu F, Xu J. Artificial pneumothorax improves radiofrequency ablation of pulmonary metastases of hepatocellular carcinoma close to mediastinum. BMC Cancer 2021;21:505.
- 142. Ahrar K, Tam AL, Kuban JD, Wu CC. Imaging of the thorax after percutaneous thermal ablation of lung malignancies. Clin Radiol 2022;77:31-43.
- 143. Chheang S, Abtin F, Guteirrez A, Genshaft S, Suh R. Imaging features following thermal ablation of lung malignancies. Semin Intervent Radiol 2013;30:157-68.
- 144. Palussière J, Marcet B, Descat E, Deschamps F, Rao P, Ravaud A, et al. Lung tumors treated with percutaneous radiofrequency ablation: Computed tomography imaging follow-up. Cardiovasc Intervent Radiol 2011;34:989-97.
- 145. Araujo-Filho JAB, Menezes RSAA, Horvat N, Panizza PSB, Bernardes JPG, Damasceno RS, *et al.* Lung radiofrequency ablation: Post-procedure imaging patterns and late follow-up. Eur J Radiol Open 2020;7:100276. doi: 10.1016/j.ejro. 2020.100276.
- 146. Wang Y, Li G, Li W, He X, Xu L. Radiofrequency ablation of advanced lung tumors: Imaging features, local control, and follow-up protocol. Int J Clin Exp Med 2015;8:18137-43.
- 147. Abtin F, De Baere T, Dupuy DE, Genshaft S, Healey T, Khan S, et al. Updates on current role and practice of lung ablation. J Thorac Imaging 2019;34:266-77.
- 148. Habert P, Di Bisceglie M, Bartoli A, Jacquier A, Brige P, Vidal V, et al. Description of morphological evolution of lung tumors treated by percutaneous radiofrequency ablation: Long term follow-up of 100 lesions with chest CT. Int J Hyperthermia 2021;38:786-94.
- 149. Callstrom MR, Woodrum DA, Nichols FC, Palussiere J, Buy X, Suh RD, et al. Multicenter study of metastatic lung tumors targeted by interventional cryoablation evaluation (SOLSTICE). J Thorac Oncol 2020:15:1200-9.
- 150. Chaudhry A, Grechushkin V, Hoshmand M, Kim CW, Pena A, Huston B, et al. Characteristic CT findings after percutaneous cryoablation treatment of malignant lung nodules. Medicine (Baltimore) 2015:94:e1672.
- 151. Rieder C, Schwenke M, Pätz T, Georgii J, Ballhausen H, Schwen LO, et al. Evaluation of a numerical simulation for cryoablation comparison with bench data, clinical kidney and lung cases. Int J Hyperthermia 2020;37:1268-78.
- 152. de Baere T, Tselikas L, Woodrum D, Abtin F, Littrup P, Deschamps F, et al. Evaluating cryoablation of metastatic lung tumors in patients-safety and efficacy: The ECLIPSE trial--interim analysis at 1 year. J Thorac Oncol 2015;10:1468-74.
- 153. Bogoni M, Cerci JJ, Cornelis FH, Nanni C, Tabacchi E, SchÖder H, et al. Practice and prospects for PET/CT guided interventions. Q J Nucl Med Mol Imaging 2021;65:20-31.
- 154. Maas M, Beets-Tan R, Gaubert JY, Gomez Munoz F, Habert P, Klompenhouwer LG, et al. Follow-up after radiological intervention in oncology: ECIO-ESOI evidence and consensus-based

- recommendations for clinical practice. Insights Imaging 2020;11:83. doi: 10.1186/s13244-020-00884-5.
- 155. Singnurkar A, Solomon SB, Gönen M, Larson SM, Schöder H. 18F-FDG PET/CT for the prediction and detection of local recurrence after radiofrequency ablation of malignant lung lesions. J Nucl Med 2010;51:1833-40.
- Aarntzen EHJG, Heijmen L, Oyen WJG. 18F-FDG PET/CT in local ablative therapies: A systematic review. J Nucl Med 2018;59:551-6.
- 157. Zaheer SN, Whitley JM, Thomas PA. Would you bet on PET? Evaluation of the significance of positive PET scan results post-microwave ablationfor non-small cell lung cancer. J Med Imaging Radiat Oncol 2015;59:702-12.
- 158. Ahmed M. Image-guided tumor ablation: Standardization of terminology and reporting criteria--a 10-year update: Supplement to the consensus document. J Vasc Interv Radiol 2014;25:1706-8.
- 159. American Society of Clinical Oncology. Treatment Algorithm for Lung Cancer Surveillance After Definitive Curative Intent Therapy 2019. Available from: https://www.asco.org/sites/new-www.asco. org/files/content-files/practice-and-guidelines/documents/2019-LC-Surveillance-Algorithm.pdf.
- 160. Filippiadis DK, Binkert C, Pellerin O, Hoffmann RT, Krajina A, Pereira PL. Cirse quality assurance document and standards for classification of complications: The cirse classification system. Cardiovasc Intervent Radiol 2017;40:1141-6.
- Hiraki T, Gobara H, Fujiwara H, Ishii H, Tomita K, Uka M, et al. Lung cancer ablation: Complications. Semin Intervent Radiol 2013;30:169-75
- 162. Genshaft SJ, Suh RD, Abtin F, Baerlocher MO, Dariushnia SR, Devane AM, et al. Society of interventional radiology quality improvement standards on percutaneous ablation of non-small cell Lung cancer and metastatic disease to the lungs. J Vasc Interv Radiol 2021;32:1242.e1-10.
- 163. Kennedy SA, Milovanovic L, Dao D, Farrokhyar F, Midia M. Risk factors for pneumothorax complicating radiofrequency ablation for lung malignancy: A systematic review and meta-analysis. J Vasc Interv Radiol 2014;25:1671-81.e1.
- 164. Xu S, Qi J, Li B, Bie ZX, Li YM, Li XG. Risk prediction of pneumothorax in lung malignancy patients treated with percutaneous microwave ablation: Development of nomogram model. Int J Hyperthermia 2021;38:488-97.
- 165. Zheng A, Wang X, Yang X, Wang W, Huang G, Gai Y, et al. Major complications after lung microwave ablation: A single-center experience on 204 sessions. Ann Thorac Surg 2014;98:243-8.
- Dassa M, Izaaryene J, Daidj N, Piana G. Efficacy of tract embolization after percutaneous pulmonary radiofrequency ablation. Cardiovasc Intervent Radiol 2021;44:903-10.
- 167. Wang D, Li X, Yu W. Intratumoral injection of hypertonic glucose in treating refractory pneumothorax caused by microwave ablation: A preliminary study. Cardiovasc Intervent Radiol 2019;42:915-9.
- 168. bu-Hijleh M, Blundin M. Emergency use of an endobronchial one-way valve in the management of severe air leak and massive subcutaneous emphysema. Lung 2010;188:253-7.
- 169. Yoshimatsu R, Yamagami T, Terayama K, Matsumoto T, Miura H, Nishimura T. Delayed and recurrent pneumothorax after radiofrequency ablation of lung tumors. Chest 2009;135:1002-9.
- 170. Clasen S, Kettenbach J, Kosan B, Aebert H, Schernthaner M, Kröber SM, et al. Delayed development of pneumothorax after pulmonary radiofrequency ablation. Cardiovasc Intervent Radiol 2009;32:484-90.
- Harvey J, Windsor MN, Steinke K. Delayed complications following microwave ablation of lung tumours. J Med Imaging Radiat Oncol 2019;63:770-8.
- 172. Kashima M, Yamakado K, Takaki H. Complications after 1000 lung radiofrequency ablation sessions in 420 patients: A single center's experiences. AJR Am J Roentgenol 2011;197:576-80.
- 173. Hiraki T, Tajiri N, Mimura H, Yasui K, Gobara H, Mukai T, et al.

- Pneumothorax, pleural effusion, and chest tube placement after radiofrequency ablation of lung tumors: Incidence and risk factors. Radiology 2006;241:275-83.
- 174. Xu S, Qi J, Li B, Bie ZX, Li YM, Li XG. Risk prediction of pleural effusion in lung malignancy patients treated with CT-guided percutaneous microwave ablation: A nomogram and artificial neural network model. Int J Hyperthermia 2021;38:220-8.
- 175. Steinke K, King J, Glenn D, Morris DL. Pulmonary hemorrhage during percutaneous radiofrequency ablation: A more frequent complication than assumed? Interact Cardiovasc Thorac Surg 2003:2:462-5.
- Dillon P, Sato KT. Radiofrequency ablation of pulmonary neoplasm complicated by pulmonary hemorrhage. Semin Intervent Radiol 2011;28:175-8.
- 177. Nour-Eldin NE, Naguib NN, Mack M, Abskharon JE, Vogl TJ. Pulmonary hemorrhage complicating radiofrequency ablation, from mild hemoptysis to life-threatening pattern. Eur Radiol 2011;21:197-204.
- 178. Nomura M, Yamakado K, Nomoto Y. Complications after lung radiofrequency ablation: Risk factors for lung inflammation. Br J Radiol 2008;81:244-9.
- 179. Chehab MA, Thakor AS, Tulin-Silver S, Connolly BL, Cahill AM, Ward TJ, et al. Adult and pediatric antibiotic prophylaxis during vascular and IR procedures: A society of interventional radiology practice parameter update endorsed by the cardiovascular and interventional radiological society of Europe and the Canadian association for interventional radiology. J Vasc Interv Radiol 2018;29:1483-501.e2.
- 180. Steinke K, Glenn D, King J, Clark W, Zhao J, Clingan P, et al. Percutaneous imaging-guided radiofrequency ablation in patients with colorectal pulmonary metastases: 1-year follow-up. Ann Surg Oncol 2004;11:207-12.
- 181. Hiraki T, Gobara H, Mimura H, Sano Y, Takigawa N, Tanaka T, et al. Aspergilloma in a cavity formed after percutaneous radiofrequency ablation for lung cancer. J Vasc Interv Radiol 2009;20:1499-500.
- 182. Huang G, Liu Q, Ye X, Yang X, Wei Z, Li W, et al. Invasive pulmonary aspergillosis: A rare complication after microwave ablation. Int J Hyperthermia 2014;30:412-7.
- 183. Alberti N, Frulio N, Trillaud H, Jougon J, Jullie ML, Palussiere J. Pulmonary aspergilloma in a cavity formed after percutaneous radiofrequency ablation. Cardiovasc Intervent Radiol 2014;37:537-40.
- 184. Huang G, Ye X, Yang X, Wang C, Zhang L, Ji G, et al. Invasive pulmonary aspergillosis secondary to microwave ablation: A multicenter retrospective study. Int J Hyperthermia 2018;35:71-8.
- 185. Alberti N, Buy X, Frulio N, Montaudon M, Canella M, Gangi A, et al., Palussière J. Rare complications after lung percutaneous radiofrequency ablation: Incidence, risk factors, prevention and management. Eur J Radiol 2016;85:1181-91.
- 186. Tomiyama N, Yasuhara Y, Nakajima Y, Adachi S, Arai Y, Kusumoto M, et al. CT-guided needle biopsy of lung lesions: A survey of severe complication based on 9783 biopsies in Japan. Eur J Radiol 2006:59:60-4.
- Alexander ES, Hankins CA, Machan JT, Healey TT, Dupuy DE. Rib fractures after percutaneous radiofrequency and microwave ablation of lung tumors: Incidence and relevance. Radiology 2013;266:971-8.
- 188. Hiraki T, Mimura H, Gobara H, Sano Y, Fujiwara H, Iguchi T, et al. Two cases of needle-tract seeding after percutaneous radiofrequency ablation for lung cancer. J Vasc Interv Radiol 2009;20:415-8.
- 189. Reilly C, Sato KT. Pulmonary radiofrequency ablation complicated by acute respiratory distress syndrome. Semin Intervent Radiol 2011;28:162-6.
- 190. Zheng A, Yang X, Ye X, Huang G, Wei Z, Wang J, *et al.* Bronchopleural fistula after lung ablation: Experience in two cases and literature review. Indian J Cancer 2015;52(Suppl 2):e41-6.
- 191. Vyas V, Paul M. Catastrophic complications following cryoablation of lung cancer. Proc (Bayl Univ Med Cent) 2020;34:131-2.

- 192. Láinez Ramos-Bossini AJ, Ruiz Carazo E, López Milena G. Double fistula after cavitation of lung adenocarcinoma treated by microwave thermal ablation. An exceedingly rare complication. Arch Bronconeumol 2021;S1579-2129(21)00190-7. doi: 10.1016/j. arbr. 2021.05.018.
- 193. Mak KL, Chan JWY, Lau RWH, Ng CSH. Management of bronchopleural fistula with endobronchial valve in hybrid operating room following transbronchial microwave ablation. Interact Cardiovasc Thorac Surg 2021;33:992-4.
- 194. Shahrouki P, Barclay J, Khan S, Genshaft S, Abtin F, McGraw C, et al. Treatment of post-ablation bronchopleural fistula using percutaneous synthetic hydrogel surgical sealant: Initial experience of safety and efficacy. Cardiovasc Intervent Radiol 2021;44:325-32.
- 195. Welch BT, Brinjikji W, Schmit GD, Callstrom MR, Kurup AN, Cloft HJ, et al. A national analysis of the complications, cost, and mortality of percutaneous lung ablation. J Vasc Interv Radiol 2015;26:787-91.
- 196. Grieco CA, Simon CJ, Mayo-Smith WW, DiPetrillo TA, Ready NE, Dupuy DE. Percutaneous image-guided thermal ablation and radiation therapy: Outcomes of combined treatment for 41 patients with inoperable stage I/II non-small-cell lung cancer. J Vasc Interv Radiol 2006;17:1117-24.
- 197. Uhlig J, Mehta S, Case MD, Dhanasopon A, Blasberg J, Homer RJ, et al. Effectiveness of thermal ablation and stereotactic radiotherapy based on stage I lung cancer histology. J Vasc Interv Radiol 2021;32:1022-8.e4.
- 198. Wei Z, Ye X, Yang X, Zheng A, Huang G, Li W, *et al.* Microwave ablation in combination with chemotherapy for the treatment of advanced non-small cell lung cancer. Cardiovasc Intervent Radiol 2015;38:135-42.
- 199. Sun YH, Song PY, Guo Y, Pang M, He WN, Zhang WH, *et al.* Effects of microwave ablation or its combination with whole-body chemotherapy on serum vascular endothelial growth factor levels in patients with stage IIIB/IV NSCLC. Genet Mol Res 2015;14:10015-25.
- 200. Halsey K, Wu J, Su C, Hsieh B, Yi T, Collins SA, et al. Ablation therapy for advanced stage non-small cell lung cancer: A national cancer database study. J Vasc Interv Radiol 2020;31:1210-5.e4.
- 201. Zhao Y, Zhang X, Zhao H, Gong T, Li J, Tsauo J, et al. Systemic therapy plus thermal ablation versus systemic therapy alone for oligometastatic liver metastases from non-small cell lung cancer. Cardiovasc Intervent Radiol 2020;43:1285-93.
- 202. Xu F, Song J, Lu Y, Wang J, Wang J, Xiao H, *et al.* Clinical efficacy of systemic chemotherapy combined with radiofrequency ablation and microwave ablation for lung cancer: A comparative study. Int J Hyperthermia 2021;38:900-6.
- 203. Wei Z, Yang X, Ye X, Feng Q, Xu Y, Zhang L, et al. Microwave ablation plus chemotherapy versus chemotherapy in advanced non-small cell lung cancer: A multicenter, randomized, controlled, phase III clinical trial. Eur Radiol 2020;30:2692-702.
- 204. Uhlig J, Case MD, Blasberg JD, Boffa DJ, Chiang A, Gettinger SN, et al. Comparison of survival rates after a combination of local treatment and systemic therapy vs systemic therapy alone for treatment of stage IV non-small cell lung cancer. JAMA Netw Open 2019;2:e199702.
- Shan Y, Yin X, Lin F, Wang C, Kong Y, Yao W. Chemotherapy combined with intermittent microwave ablation in the treatment of oligometastatic non-small cell lung cancer. J BUON 2021;26:320-7.
- 206. Weickhardt AJ, Scheier B, Burke JM. Local ablative therapy of oligoprogressive disease prolongs disease control by tyrosine kinase inhibitors in oncogene-addicted non-small-cell lung cancer. J Thorac Oncol 2012;7:1807-14.
- 207. Yu HA, Sima CS, Huang J. Local therapy with continued EGFR tyrosine kinase inhibitor therapy as a treatment strategy inEGFR-mutant advanced lung cancers that have developed acquired resistance to EGFR tyrosine kinase inhibitors. J Thorac Oncol 2013;8:346-51.
- 208. Ni Y, Bi J, Ye X, Fan W, Yu G, Yang X, et al. Local microwave ablation with continued EGFR tyrosine kinase inhibitor as a

- treatment strategy in advanced non-small cell lung cancers that developed extra-central nervous system oligoprogressive disease during EGFR tyrosine kinase inhibitor treatment: A pilot study. Medicine (Baltimore) 2016;95:e3998.
- Guo R, Li Y, Bie Z, Li B, Li X. Pneumothorax triggered by EGFR-tyrosine kinase inhibitors in three microwave ablation candidates: A review of the literature. Thorac Cancer 2020;11:2031-5.
- 210. Ni Y, Liu B, Ye X, Fan W, Bi J, Yang X, et al. Local thermal ablation with continuous EGFR tyrosine kinase inhibitors for EGFR-Mutant non-small cell lung cancers that developed extra-central nervous system (CNS) oligoprogressive disease. Cardiovasc Intervent Radiol 2019;42:693-9.
- 211. Ni Y, Ye X, Yang X, Huang G, Li W, Wang J, *et al.* Microwave ablation as local consolidative therapy for patients with extracranial oligometastatic EGFR-mutant non-small cell lung cancer without progression after first-line EGFR-TKIs treatment. J Cancer Res Clin Oncol 2020;146:197-203.
- 212. Li LZ, Wu JM, Chen T, Zhao LC, Zhuang JN, Hong HS, et al. Ablation therapy combined with EGFR TKIs in the treatment of advanced non-small cell lung cancer: A meta-analysis of randomized controlled trials. Evid Based Complement Alternat Med 2021;2021:6624429. doi: 10.1155/2021/6624429.
- 213. Li X, Qi H, Qing G, Song Z, Xie L, Cao F, et al. Microwave ablation with continued EGFR tyrosine kinase inhibitor therapy prolongs disease control in non-small-cell lung cancers with acquired resistance to EGFR tyrosine kinase inhibitors. Thorac Cancer 2018;9:1012-7.

- 214. de Baere T, Tselikas L, Gravel G, Deschamps F. Lung ablation: Best practice/results/response assessment/role alongside other ablative therapies. Clin Radiol 2017;72:657-64.
- 215. Ye X, Fan W, Wang Z, Wang J, Wang H, Wang J, et al. [Expert consensus for thermal ablation of pulmonary subsolid nodules (2021 edition)]. Zhongguo Fei Ai Za Zhi 2021;24:305-22. Chinese.
- Ni Y, Xu H, Ye X. Image-guided percutaneous microwave ablation of early-stage non-small cell lung cancer. Asia Pac J Clin Oncol 2020:16:320-5.
- 217. Páez-Carpio A, Gómez FM, Isus Olivé G, Paredes P, Baetens T, Carrero E, et al. Image-guided percutaneous ablation for the treatment of lung malignancies: Current state of the art. Insights Imaging 2021;12:57.
- 218. Genshaft SJ, Suh RD, Abtin F, Baerlocher MO, Chang AJ, Dariushnia SR, et al. Society of interventional radiology multidisciplinary position statement on percutaneous ablation of non-small cell lung cancer and metastatic disease to the lungs: Endorsed by the Canadian association for interventional radiology, the cardiovascular and interventional radiological society of Europe, and the society of interventional oncology. J Vasc Interv Radiol 2021;32:1241.e1-12.
- Jasper K, Stiles B, McDonald F, Palma DA. Practical management of oligometastatic non-small-cell lung cancer. J Clin Oncol 2022:40:635-41.
- 220. Chiang CL, Tsai PC, Yeh YC, Wu YH, Hsu HS, Chen YM. Recent advances in the diagnosis and management of multiple primary lung cancer. Cancers (Basel) 2022;14:242. doi: 10.3390/cancers14010242.

APPENDIX

Procedure for CT-guided percutaneous thermal ablation of thoracic tumors

For patients with indications of the use of IGTA for treating thoracic tumors, the following procedure steps are recommended:

- 1. Place the patient in a comfortable and stable (prone, supine, lateral, etc.) position on the CT scanner table. Advise the patient to perform some calming breathing exercises.
- 2. Use a marker to mark the potential applicator insertion site and perform a CT scan (3–5-mm thickness).
 - (a) Assess target lesion location, size, shape, and relationship with neighboring vital organs.
 - (b) Determine the puncture path: the "target skin distance" (the distance from the skin puncture site to the target lesion) should generally be >2 cm. No vital organs (bone, blood vessels, trachea, etc.) should be blocked along the puncture path.
 - (c) Measure the angle of trajectory (the distance from the skin puncture site to the pleura the lesion and the distance from the vital anatomical structures on the puncture path).
 - (d) Select a larger intercostal space for the procedure in order to facilitate an appropriate adjustment of puncture direction. If necessary, an auxiliary ablation technique may be used, such as artificial hydrothorax or pneumothorax.
- 3. Administer 1–2% lidocaine as the local anesthetic. Pleural anesthesia is necessary. Leave the syringe needle subcutaneously as a marker or insert a 22-gauge spinal needle up to the pleura and adjust the angle (the spinal needle will serve as a guide for the applicator). Perform CT scan to adjust the ablation applicator angle.
- 4. Under CT guidance, insert an ablation applicator through the preset path to the target lesion. It is recommended to follow the three steps described below:
 - (a) Use CT to observe the puncture direction and all vital anatomical structures before the ablation applicator penetrates the chest (for patients with a thicker chest wall) and before the applicator punctures the lung parenchyma (for patients with a thinner chest wall).
 - (b) When the ablation applicator is close to the target lesion, perform a CT scan to observe any complications, such as hemorrhage or pneumothorax. Evaluate the angle of the ablation applicator and presence of any possible vital organs on the puncture path.
 - (c) After the ablation applicator penetrates the target lesion, perform a CT scan (3D reconstruction if necessary) to confirm the precise position of the applicator tip and its relationship with important surrounding anatomical structures.
- 5. Start ablation according to the recommended parameters. Ablation parameters (temperature, power, time, cycle, etc.) vary between different devices. During the procedure, monitor the applicator using CT to observe whether the applicator is "off target," if it needs to be adjusted when the preplanning range of ablation has been achieved, or for any possible complications (e.g., hemorrhage or pneumothorax).
- 6. At the end of the procedure, perform a CT scan to assess technical success. The ablation applicator can then be pulled out. Ablate the withdrawal path and avoid injury to the pleura and skin.
- 7. Perform a whole-lung CT scan to detect immediate complications and preliminary efficacy. Severe pleural effusion or pneumothorax should be treated immediately.