Expert consensus on thermal ablation therapy of pulmonary subsolid nodules (2021 Edition)

ABSTRACT

The Expert Consensus reviews current literatures and provides clinical practice guidelines for thermal ablation of pulmonary subsolid nodules or ground-glass nodule (GGN). The main contents include the following: (1) clinical evaluation of GGN; (2) procedures, indications, contraindications, outcomes evaluation, and related complications of thermal ablation for GGN; and (3) future development directions.

KEY WORDS: Ground-glass nodule, lung cancer screening, pulmonary subsolid nodules, thermal ablation

INTRODUCTION

Lung cancer is the second most common cancer worldwide, and it has the highest mortality.[1] Early detection, early diagnosis, and early treatment are important approaches to reduce mortality. In 2011, the National Lung Screening Trial reported for the first time that lung cancer mortality in high-risk populations could be reduced by 20% using low-dose computed tomography (LDCT) screening instead of standard chest X-ray. [2] As LDCT screening programs have been widely carried out in recent years, asymptomatic pulmonary nodules have been detected in increasing numbers. The detection rate of pulmonary nodules in China is 20%-80%.[3-6] However, more than >97% of the pulmonary nodules found by LDCT screening are benign. Lung cancer has a detection rate of only 0.7%-2.3%.[2,4-8] A detection rate that is too high may lead to overdiagnosis, overtreatment, and waste of medical resources, and higher levels of anxiety in patients.[9-13] Current guidelines for the screening and treatment of lung nodules are mainly derived

Access this article online

Quick Response Code:

Website: www.cancerjournal.net

DOI: 10.4103/jcrt.jcrt_1485_21

from the National Comprehensive Cancer Network, Fleischner Society, American College of Chest Physicians, Asian experts, and Chinese experts. [14,15] No consensus has been reached on a set of guidelines up to this point because difference in professional background and hospital practice guidelines.

Even guidelines differ among practitioners, consistent principles are applied for the management of pulmonary nodules: Follow-up and surgical resection. With the development of surgery, particularly the universal use of video-assisted thoracoscopic surgery (VATS), outcomes have been improved and postoperative complications and mortality from early-stage lung cancer have been lowered, [16-19] but there are still many unsolved problems.

A pulmonary nodule is often considered as a predictor of a precancerous lesion or early-stage lung cancer. However, lung cancer with ground-glass nodule (GGN) is characterized by "indolent" development, with distant metastasis in very few patients; it has a favorable prognosis with a 100% 5-year survival rate after surgery. [20-27] It is a special subtype of lung cancer as it differs from traditional early-stage lung cancer. The following problems exist

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

 $\textbf{For reprints contact:} \ WKHLRPMedknow_reprints@wolterskluwer.com$

Cite this article as: Ye X, Fan W, Wang Z, Wang J, Wang H, Wang J, et al. Expert consensus on thermal ablation therapy of pulmonary subsolid nodules (2021 Edition). J Can Res Ther 2021;17:1141-56.

Xin Ye1, Weijun Fan², Zhongmin Wang³, Junjie Wang4, Hui Wang⁵, Jun Wang1, Chuntang Wang⁶, Lizhi Niu⁷, Yong Fang8, Shanzhi Gu⁹, Hui Tian¹⁰, Baodong Liu¹¹, Lingxiao Liu¹², Lou Zhong¹³. Yiping Zhuang¹⁴, Jiachang Chi¹⁵, Xichao Sun¹⁶, Nuo Yang¹⁷, Zhigang Wei¹, Xiao Li18, Xiaoguang Li¹⁹, Yuliang Li²⁰, Chunhai Li21, Yan Li1, Xia Yang²². Wuwei Yang²³, Po Yang²⁴, **Zhengqiang** Yang¹⁸, Yueyong Xiao²⁵, Xiaoming Song²⁶, Kaixian Zhang²⁷, Shilin Chen²⁸, Weisheng Chen²⁹, Zhengyu Lin³⁰, Dianjie Lin³¹. Zhiqiang Meng³², Xiaojing Zhao³³, Kaiwen Hu³⁴, Chen Liu35, Cheng Liu³⁶, Chundong Gu³⁷, Dong Xu38, Yong Huang³⁹, Guanghui Huang²², Zhongmin Peng⁴⁰, Liang Dong⁴¹, Lei Jiang⁴², Yue Han18, Qingshi Zeng⁴³, Yong Jin⁴⁴, Guangyan Lei⁴⁵

Submitted: 30-Aug-2021 **Accepted in revised form:** 12-Oct-2021

Published: 27-Nov-2021

Bo Zhai¹⁵, Hailiang Li⁴⁶, Jie Pan⁴⁷

Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, 10 Department of Thoracic Surgery, Qilu Hospital of Shandong University, Departments of 16 Pathology, 22 Oncology, 31 Respiratory and Critical Care Medicine and 40Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 20Department of Interventional Medicine, The Second Hospital of Shandong University, ²¹Department of Radiology, Qilu Hospital of Shandong University, Departments of ²⁶Thoracic Surgery, 41Respiratory and Critical Care Medicine and 43Medical Imaging, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 36 Department of Radiology, Shandong Medical Imaging Research Institute, 39 Department of Imaging, Affiliated Cancer Hospital of Shandong First Medical University, Jinan, ²Department of Minimally Invasive Interventional Therapy, Sun Yat-Sen University Cancer Center, Department of Oncology, Affiliated Fuda Cancer Hospital, Jinan University, Guangzhou, ³Department of Interventional Radiology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, 12Department of Interventional Radiology, Zhongshan Hospital, Shanghai Medical College of Fudan University, Departments of ¹⁵Interventional Oncology and ³³Thoracic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, ³²Minimally Invasive Therapy Center, Fudan University Shanghai Cancer Center, Shanghai, ⁴Department of Radiation Oncology, Peking University Third Hospital, ¹¹Department of Thoracic Surgery, Xuan Wu Hospital Affiliated to Capital Medical University, 18 Department of Interventional Therapy, Chinese Academy of Medical Sciences and Peking Union Medical College, Cancer Hospital, 19Minimally Invasive Tumor Therapies Center, Beijing Hospital, 23Department of Oncology, The Fifth Medical Center, Chinese PLA General Hospital, ²⁵Department of Radiology, Chinese PLA Gneral Hospital, ³⁴Department of Oncology, Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, 35Department of Interventional Therapy, Beijing Cancer Hospital, 47Department of Radiology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, ⁵Interventional Center, Jilin Provincial Cancer Hospital, Changchun, Department of Thoracic Surgery, Dezhou Second People's Hospital, Dezhou, Department of Medical Oncology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, School of Medicine, 38 Department of Diagnostic Ultrasound Imaging and Interventional Therapy, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, ⁹Department of Interventional Radiology, Hunan Cancer Hospital, Changsha, ¹³Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Departments of ¹⁴Interventional Therapy and ²⁸Thoracic Surgery, Jiangsu Cancer Hospital, Nanjing, ¹⁷Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, ²⁴Interventional and Vascular Surgery, The Fourth Hospital of Harbin Medical University, Harbin, ²⁷Department of Oncology, Tengzhou Central People's Hospital, Tengzhou, 29Department of Thoracic Surgery, Fujian Medical University Cancer Hospital, 30Department of Intervention, The First Affiliated Hospital of Fujian Medical University, Fujian, ³⁷Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, ⁴²Department of Radiology, The Convalescent Hospital of East China, Wuxi, 44Department of Interventional Therapy, The Second Affiliated Hospital of Soochow University, Suzhou, 45Department of Thoracic Surgery, Shanxi Provincial Cancer Hospital, Xi'an, 46Department of Interventional Radiology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China

For correspondence:

Prof. Xin Ye,

Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan 250014, China.

E-mail: yexintaian2020@163.com

Prof. Weijun Fan,

Department of Minimally Invasive Interventional Therapy, Sun Yat-Sen University Cancer Center, Guangzhou 510050, China.

E-mail: fanwj@sysucc.org.cn

in the premature use of VATS to remove this type of lesion: (1) Premature surgical intervention for pulmonary nodules, particularly for precancerous lesions, will lead to early and unnecessary organ damage and lung function loss. Moreover, early surgery cannot significantly improve the overall survival of patients, when compared with patients whose intervention are follow-up and elective surgery. (2) There are no clear selection criteria for surgical intervention of multiple pulmonary nodules and no principles for the follow-up management of residual nodules. (3) Preoperative diagnosis of pulmonary nodules is made by imaging without pathological evidence. Surgical resection of pulmonary nodules may be unnecessary and causes postoperative complications when the lesions are founds benign. [28-30] (4) As the population ages, increasing numbers of patients with early-stage lung cancer have been diagnosed above 75 years old, when surgery is almost impossible. Moreover, there are also problems with follow-up, such as follow-up intervals and termination. Each reexamination may trigger anxiety, affect the quality of life,[31] and increase patient's exposure to X-rays. New approaches to manage lung nodules need to be explored to solve the above problems.

As a precise and minimally invasive technique, local thermal ablation has been applied in the treatment of early-stage lung cancer, and the number of patients treated is increasing rapidly every year.[32-41] This technique is minimally invasive and has good efficacy, high safety, and repeatability. Thermal ablation for pulmonary nodules is being developed. [42-50] The Expert Group on Tumor Ablation Therapy of the Chinese Medical Doctors Association, the Tumor Ablation Committee of the Chinese College of Interventionalists, the Society of Tumor Ablation Therapy of the Chinese Anti-Cancer Association, and the Ablation Expert Committee of the Chinese Society of Clinical Oncology provided the platform for multidisciplinary experts to formulate the 2021 Expert Consensus. The experts, from multiple disciplines, including thoracic surgery, medical oncology, imaging, radiotherapy, respiratory, interventional medicine, pathology, and traditional Chinese medicine, gathered together and aimed to achieve consensus for clinical practice and thermal ablation treatment for pulmonary subsolid nodules or GGN.

CONCEPT AND CLASSIFICATION OF GROUND-GLASS NODULE

Concept

Arising from various factors, pulmonary nodules cause pathological changes, such as reduction of air content in the alveoli, increase in cell number, proliferation of alveolar epithelial cells, thickening of the alveolar septum, partial congestion, and edema in terminal air sacs. In lung-imaging features, it is often manifested as focal and increased hazy opacities in the lung parenchyma, with preservation of the bronchial structures and vascular margins, clear or unclear boundary, a diameter ≤ 3 cm (round or quasi-circular shadow), and solitary or multiple pulmonary nodules, and without atelectasis, hilus lymph node enlargement, or pleural effusion. [15,51-54]

Classification

Benign or malignant

(1) Benign: benign tumors, various infectious diseases, rheumatic diseases, congenital diseases, and pulmonary hemorrhage. (2) Malignant: Such as lung cancer, lymphoma, sarcoma, and pulmonary metastases, etc.^[55]

Density

Pulmonary nodules can be divided into solid and subsolid. (1) Solid nodule: Computed tomography (CT) (lung window) shows a round or quasi-circular lesion in the lung, with increased density, which obscured all of the lung parenchyma within the vessel and bronchus. CT (mediastinal window) shows a lesion with soft tissue density. (2) Subsolid nodule:[28,53,56,57] CT (lung window) shows a round or quasi-circular lesion of slightly increased CT attenuation, through which the normal lung parenchyma structures, airways, and vessels are visually preserved. CT (mediastinal window) shows nothing, but similar to ground glass opacity, thus it is also called a GGN or a ground-glass opacity (GGO). GGNs are radiologically divided into two categories: pure GGN (pGGN), which contain no solid component, and part-solid GGN, which contain both a pure GGN region and a consolidated region (also called mixed GGN-mGGN). GGN is an unspecific radiologic feature seen in numerous clinical conditions involving different pathologic processes. If GGN is malignant or potentially malignant, its pathology falls under lung adenocarcinoma-associated histological subtypes, [53,58-61] including multiple progressing stages of adenocarcinoma, such as atypical adenomatous hyperplasia (AAH), adenocarcinoma in situ (AIS), microinvasive lung adenocarcinoma (MIA), and invasive adenocarcinoma (IAC). In accordance with WHO 2021's new classification, AAH and AIS are called precursor glandular lesions.[62]

Size

- (1) Micronodule, <5 mm diameter (<100 mm³ volume);
- (2) mininodule, 5-10 mm diameter (100-400 mm³ volume);
- (3) nodule, 11-30 mm diameter (>400 mm³ volume).[14,57]

Number

(1) Solitary nodule, with a single lesion; (2) multiple nodules, with ≥ 2 lesions. [63-65]

Level of risk factor

(1) High-risk nodules: [2,3,14,15] patients aged ≥50 years old with one of the following risk factors: (a) history of smoking (20 packs of cigarettes or more per year, in other words 400 cigarettes per year) and quits for less than 15 years; (b) history of known risk factors exposure (such as asbestos, beryllium, uranium, and radon); (c) history of chronic obstructive pulmonary disease (COPD), diffuse pulmonary fibrosis, or past medical history of tuberculosis; or (d) family history of lung cancer in a first-degree relative. (2) Low-risk nodules: patients without risk factors. In recent years, subsolid GGN has been found in many female patients aged 40-50 years old, with no smoking history or risk factors exposure, and have no complications with COPD or diffuse pulmonary fibrosis. [3-5,66-68] The reason for this remains unclear. It may be that the estrogen receptor-induced signal pathway has contributed to the occurrence of lung adenocarcinoma in female patients. [69] In addition, the potential factor that some nonsmoking females in China have a long history of passive smoking (from cigarettes or cooking) has not been ruled out.[70]

COMPUTED TOMOGRAPHY IMAGING EVALUATION

Computed tomography scan parameters and measurement Scan parameters

CT is the first choice for the diagnosis of GGN; CT scan detector \geq 16 rows; and the collimation thickness is measured as follows: (1) 1-mm-thin-slice reconstruction. If thickness is <1 mm, reconstruct without interval. If thickness is >1 mm, reconstruct with an interval of 50%–80% of the collimation thickness. The reconstructed image matrix is 512 \times 512. (2) The total radiation exposure dose is 1.0 mSv, 120 kV, and mAs \leq 40. (3) Lung window: The window level is -700 to -600 Hounsfield units (HU), and the window width is 1500–1600 HU; mediastinal window: Window level is 30–70 HU, and the window width is 350–400 HU. (4) Scan range: At the end of deep inspiration, ask patient to hold their breath, scan from the apex of the lung to the costophrenic angle, with scan and sampling time not exceeding 10 s.[2,14,71-73]

Measurement

The size, volume, density, shape, margin, internal structure, and growth of GGNs are critical technical parameters for making GGN treatment decisions, but there are uniform standards for the measurement and observation of these parameters. [74,75] In line with the principles of practicability, operability, and repeatability, and supported by evidence-based medicine, the following consensuses have been reached by the 2021 Expert Consensus: (1) Unit of measurement: millimeter or cubic millimeter; (2) Nodule size: maximum diameter of the transverse section in lung window image; (3) Nodule volume: calculated according to the segmentation result of the nodule and the number of voxels included in the nodule region; (4) measurement of consolidation in nodule: lung window and mediastinal window are combined in measurement, but priority is given to the lung window (to measure the maximum diameter

of the transverse section); [76-78] (5) calculation of consolidation tumor ratio (CTR): the ratio of the maximum diameter of consolidation in the nodule transverse section to the maximum nodule diameter in the lung window image; (6) density, shape, margin, and internal structure: Combined use of lung window and mediastinal window images. Meanwhile, observation can be done on a different axis, and three-dimensional reconstruction can be performed if necessary; (7) volume doubling time (VDT): VDT is an important parameter for differentiating benign and malignant GGNs. [79-81] Generally, VDT is ≥800 days for benign lesions, 400-600 days for precursor glandular lesions and microinvasive lesions, <400 days for invasive lesions, and conventionally, 100-300 days for lung cancer; (8) artificial intelligence (AI):[82,83] considering the large differences within existing AI software, the same CT scanner model and the same software package should be adopted. Moreover, consecutive and long-term follow-up and reexamination should be carried out in the same medical institution so as to obtain valuable references from the AI results.

Computed tomography imaging analysis and nodule features

No unified standard for CT imaging has been formulated to distinguish between benign and malignant GGNs, so clinical prediction is often based on imaging characteristics of GGN, such as size, shape, margin, tumor-lung interface, internal structure, location, and dynamic changes in follow-up; of which the most important imaging characteristics are nodule size, internal structure characteristics (particularly the solid component), and the dynamic changes during follow-up.^[78,84,85]

Ground-glass nodule size

(1) Micronodule: <5 mm diameter (<100 mm³ volume), 95%–99% benign lesions; (2) Mininodule: 5–10 mm diameter (100–400 mm³ volume), 85%–90% benign or precursor glandular lesions; (3) nodule: 11–30 mm diameter (>400 mm³ volume). The GGNs that do not disappear or shrink and persist after 3–4 months of observation and follow-up, 60%–80% are precursor glandular or invasive lesions. [63,81,86-90]

Shape

Most malignant GGNs are round or quasi-circular in shape, but irregular shapes are observed in a high proportion of malignant GGNs near the interlobular fissures or great vessels.

Margin

Lobulated sign, spicule sign, pleural indentation sign, and vessel convergence sign of GGN often indicate the possibility of malignancy. Blurred margins and even exudations are observed in inflammatory GGN, whereas neat and smooth margins are observed in benign noninflammatory GGN. The sharp corner or fibrous cord on the margin of a GGN or a fibrous cord and pleural thickening around the margin often suggest that the nodule is benign. [91-93]

Internal structure

(1) CT attenuation value: Reports differ greatly on CT

attenuation value for predicting pGGN as a precursor glandular or invasive lesion. $^{[53,94-99]}$ CT values more than -450 HU usually suggests an invasive lesion, but their clinical application is unclear because of the small area of the GGN, which results in low repeatability of the measured attenuation value. (2) CTR: consolidation in mGGN is a major factor for prognosis. Pathologically, mGGN of ≥ 15 mm and CTR of $\geq 25\%$ usually indicate invasive lesions. The increase in CTR, or overall increase in GGN, or synchronous increase in both, indicates a high risk of invasive lung cancer. $^{[78,100-102]}$ (3) Other signs of nodule: air bronchogram, vacuole sign, tortuosity, or dilation of blood vessels in the nodules also indicate that GGN tends to be IAC. $^{[103-105]}$

Follow-up

Follow-up is necessary after finding GGN. About 35%-45% of GGNs will disappear after 3-4 months of follow-up, so they are known as transient GGN, which is likely associated with inflammations. [55,106-108] GGN that does not disappear after 3-4 months of follow-up is known as persistent GGN, which may be potentially malignant, and may turn malignant after a long period of development. Therefore, after GGN is discovered, a certain period of follow-up should be carried out by using the" Watchful-Waiting" method to observe the dynamic changes of GGN so as to determine the GGN.[109-112] Follow-up strategies differ between pGGN and mGGN with patients, but malignancy can be considered in most cases if the following conditions are noted during follow-up: (1) Lesions grow (increased maximum diameter or volume) and VDT meets the growth law of tumors; (2) Lesion growth and consolidation are detected; (3) Lesions remain stable but more consolidations are detected; (4) Other malignant signs are observed, such as lobulation, spicule sign, pleural indentation, air bronchogram, vacuole sign, vessel convergence sign, and tortuosity or dilation of blood vessels in nodules. The growth of GGN and consolidation changes are key observation indicators during follow-up. GGN follow-up and intervention can be carried out by referring to Figure 1, based on the existing guidelines and research findings on follow-up.

POSITRON EMISSION TOMOGRAPHY/COMPUTED TOMOGRAPHY

Functional imaging is an important way to help distinguish between benign and malignant GGN; however, positron emission tomography/computed tomography (PET/CT) plays a limited role in the diagnosis of GGN lesions. [99,124-127] (1) pGGN: PET/CT is not recommended for pGGN of any size; (2) PET-CT is not recommended for mGGN with a maximum diameter ≤ 10 mm and with a consolidation < 5 mm; (3) PET/CT is recommended to identify the nature of mGGN with a maximum diameter between 11–15 mm and with a consolidation ≥ 5 mm; but PET/CT will raise the rate of false negatives; (4) PET/CT is recommended for mGGN with a maximum diameter > 15 mm and with a consolidation of ≥ 5 mm when it is difficult to identify the nature of lesions, with a high positive rate; (5) PET/CT is recommended for GGN

Ye, et al.: Guidelines for thermal ablation of pulmonary subsolid nodules

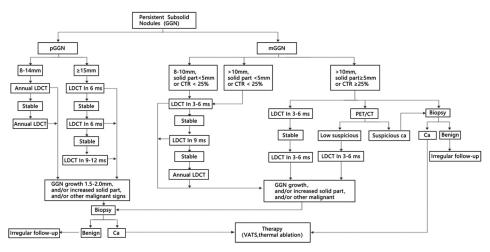


Figure 1: Clinical Follow-up and treatment of GGN. pGGN: (1) If the maximum diameter is <8 mm, routine follow-ups are not required, but subjects should be informed of its potential benefits and risks. (2) If the maximum diameter is between 8-14 mm and remains unchanged, annual routine follow-ups are required. (3) If the maximum diameter is ≥15 mm, reexaminations are required every 6 months for two consecutive times. If it remains unchanged, follow-ups can be performed every 9-12 months. mGGN: (1) If the maximum diameter is <8 mm, routine follow-ups are not required, but subjects should be informed of its potential benefits and risks. (2) If the maximum diameter is between 8-10 mm, consolidation is <5 mm, or CTR is <25%, and the lesions remain unchanged in CT, reexamination in 3-6 months and annual routine follow-ups are required afterwards. (3) If the maximum diameter is >10 mm, consolidation is <5 mm, or CTR is <25%, reexaminations are required every 3-6 months. If lesions remain unchanged, annual routine follow-ups are still required. (4) If the maximum diameter is >10 mm, consolidation is ≥5 mm, or CTR is ≥25%, reexaminations are required every 3-6 months. If lesions remain unchanged, reexaminations are required in 3-6 months. Other malignant signs include lobulation, spicule sign, pleural indentation, air bronchogram, vacuole sign, vessel convergence sign, and tortuosity or dilation of blood vessels in nodule. Multiple GGNs: Multiple GGNs are defined as the presence of two or more GGNs with maximum diameters of ≤30 mm in the lung, accounting for about 40%–50% of GGNs. By the occurrence interval of two or more ≥2 lesions, multiple GGNs can be divided into synchronous (interval <6 months) and metachronous (interval >2 years) types. [60,64,113] Multiple GGNs can further be divided into many categories by the site of occurrence, such as the same lobe of the same lung, different lobes of the same lung, and different lobes of both lungs. Pathologically, multiple GGNs include multiple progressing stages of adenocarcinoma, such as AAH, AIS, MIA, and IAC, and even the coexistence of benign and malignant lesions. [58,59,63,114] Multiple GGNs are diverse and complex, thus no consensus has been reached on the treatment method. [65,115-117] Studies suggest that each lesion of multiple GGNs is an "individual" lesion. [63-65.118-120] The treatment of multiple GGNs should follow the principle of "main," then "minor." [31] The main lesion is often determined as the largest lesion, but sometimes, it is the lesion with high risk of malignancy. The prognosis of multiple GGNs depends on the size and consolidation of the main lesion and is generally not affected by the growth of minor or residual lesions or by the occurrence of new lesions^[65,119,121-123] Ca (cancer), LDCT(low dose computed tomography) GGN (ground-glass nodule), pGGN(pure GGN), mGGN(mixed GGN)

patients with other solid nodules in lungs or have a medical history of malignant extrapulmonary tumor; (6) PET/CT can also provide an important basis for the selection of biopsy sites.

BIOPSY

Biopsy is an important approach to identify the property and determine the treatment method of GGN. Image-guided percutaneous thoracic needle biopsy (PTNB) and transbronchial lung biopsy are the most common nonsurgical approaches.

Percutaneous thoracic needle biopsy

PTNB should be guided by CT images. Chest CT images can clearly show the size, shape, and location of the lesion, as well as relationships of the lesion with ribs, mediastinum, interlobular fissures, and blood vessels, contributing to the design of puncture routes, early detection, and timely treatment of complications.^[128]

Indications

Please refer to Figure 1. pGGN: (1) Biopsy is not recommended

for lesions with maximum diameters <8 mm; (2) A maximum diameter of 8-14 mm, and lesion growth or consolidation is found during follow-up; (3) A maximum diameter of ≥15 mm, and lesion growth or consolidation is found during follow-up. mGGN: (1) Biopsy is not recommended for lesions with a maximum diameter < 8 mm, a consolidation of < 5 mm, or CTR < 25%; (2) A maximum diameter between 8-10 mm, a consolidation of <5 mm, or CTR <25%, and lesion growth or more consolidations are found during follow-up; (3) A maximum diameter >10 mm, a consolidation of <5 mm, or CTR <25%, and lesion growth or more consolidations are found during follow-up; (4) A maximum diameter >10 mm, a consolidation ≥5 mm, or CTR ≥25%, and lesion growth or more consolidations are found during follow-up; (5) A maximum diameter >10 mm, a consolidation of ≥5 mm, or CTR ≥25%, and malignancy is highly suspicious with PET-CT examinations [Figure 1].[129-136]

Contraindications

Absolute contraindications: (1) Platelet count $<50 \times 10^9/L$; (2) Serious bleeding tendencies and coagulation disorders that cannot be improved in the short term (prothrombin

time >18s, prothrombin time activity <40%).^[128,130] Relative contraindications: (1) Severe cachexia and cardiopulmonary insufficiency; (2) Significant infectious lesions on puncture routes; (3) Severe COPD, emphysema, pulmonary fibrosis; (4) Severe pulmonary arterial hypertension; (5) Patients using mechanical ventilation (ventilators); and (6) Patients with psychotic episode.

Diagnostic accuracy of percutaneous thoracic needle biopsy (1) 70%–75% for pulmonary nodules with diameter ≤8 mm; (2) 80%–85% for pulmonary nodules with a diameter between 9-10 mm; (3) 85%–95% for pulmonary nodules with a diameter between 11-20 mm; (4) 55%–65% accordance rate with adenocarcinoma subtypes after surgery. [136-141]

Auxiliary technologies for percutaneous thoracic needle biopsy (1) Biopsy after ablation: [142-148] pulmonary parenchyma bleeding during PTNB is the main factor affecting diagnostic accuracy but can be decreased by biopsy after ablation because microwave or radiofrequency ablation can coagulate blood vessels with approximately 2 mm diameter in the lungs. Please refer to relevant literatures for specific technical operations; [142-146] (2) Three-dimensional template technique: [149,150] because breathing requires a large range of motion of the lungs, it is difficult to perform PTNB, particularly the biopsy of GGN on lower lobes. Application of a three-dimensional-printed coplanar template combined with fixed needle technique can make the GGN relatively fixed, so as to reduce the impact of breathing on biopsy and increase the accuracy of biopsy.

Bronchoscopy

Traditional techniques include bronchoscopy biopsy and brush biopsy under direct vision. Perspective transbronchial lung biopsy and bronchoalveolar lavage can obtain cytological and histological information but play a limited role in the diagnosis of GGN. Other new technologies include endobronchial ultrasound-guided transbronchial lung biopsy (EBUS-TBLB), virtual bronchoscopic navigation, and electromagnetic navigation bronchoscopy (ENB), which guides an ultra-thin bronchoscope to enter Grade 5 to Grade 8 bronchi for the biopsy of GGN. [151-153]

THERMAL ABLATION TECHNOLOGY AND IMAGE GUIDANCE

As a precise, minimally invasive treatment technology, tumor thermal ablation utilizes biological effects of heat to directly cause irreversible injury or necrosis of tumor cells in one or more tumor lesions that are located in a certain organ. Radiofrequency ablation (RFA), microwave ablation (MWA), and cryoablation are the main technologies for GGN. [32,33,154]

Radiofrequency ablation

Currently, RFA is the most widely used ablation technique for the treatment of solid tumors. Through inserting radiofrequency electrodes into the tumor tissue and the application of 375500 kHz frequency with alternating current, mutual friction, and collisions of ions within the tumor tissue produce thermal biological effects to raise the local temperature up to $60^{\circ}\text{C}-120^{\circ}\text{C}$. When the tissue is heated to $>60^{\circ}\text{C}$, cell coagulation necrosis may occur. The RFA volume depends on the thermal conduction of local RFA and the thermal convection between circulating blood and extracellular fluid.

Microwave ablation

It generally uses either of these two frequencies: 915 MHz or 2450 MHz. In a microwave electromagnetic field, water molecules, protein molecules, and other polar molecules within tumor tissue vibrate at high speeds, resulting in collision and mutual friction between molecules. This can raise temperatures to 60°C–150°C in a short time, leading to coagulation necrosis of the cells. MWA has a higher convection and a lower "heat sink" effect on the lungs. [32,33,54]

Cryoablation

(1) Argon--helium cryoablation is a mature cryoablation therapy. The principle is based on Joule–Thomson theory, the target tissue could be cooled to -140°C with high--pressure argon and then rapidly heated up to $+20^{\circ}\text{C}$ to $+40^{\circ}\text{C}$ from -140°C with helium. (2) Liquid nitrogen cryoablation: Liquid nitrogen can cool target tissues to -196°C , while ethanol can heat target tissues to 80°C . The ablation process consists of successive freezing–thawing cycles, which induce cell death by protein denaturation, membrane disruption, and microvascular thrombosis.

All three technologies have been applied in GGN. [43-47,155,156] However, the lungs and GGN have relatively special tissue structures, MWA has certain advantages in treating GGN due to higher convection and lower thermal precipitation in the lungs, and it has been the most widely applied technique in clinical practice. [41,45,46,48,50]

Image guidance

CT is the most common image guidance technology applied in ablation therapy for GGN. This procedure is recommended under lung window settings or under appropriate window width and window level, with a CT slice thickness of 2–2.5 mm.

INDICATIONS AND CONTRAINDICATIONS

Prognosis of lung cancer is mainly affected by hilar and mediastinal lymphatic metastases and distant metastases. GGN like lung adenocarcinoma is a special subtype of lung adenocarcinoma, mainly with local and slow growth and almost no lymphatic or distant metastasis in AAH, AIS, and MIA. Lymphatic or distant metastasis is also rarely seen, even in IAC, with a maximum diameter $\leq\!30\,\mathrm{mm}$ and CTR $\leq\!50\%$. Thermal ablation is one of the most effective methods for local treatment, can treat GGN through thermobiological effects. It is possible to achieve curative ablation, leading to complete necrosis of lung tumors. $^{[32,157]}$

Indications

Peripheral GGN: (1) Patients who cannot tolerate surgical resections due to poor cardiopulmonary function or advanced age (>70 years); (2) Patients who refuse surgical resections; (3) Patients who cannot tolerate or who refuse a second surgery for new or remaining lesions after their first surgical resection; (4) Multiple GGNs (ablation of the main lesion first, followed by consideration of ablation of minor lesions according to their development); (5) Severe pleural adhesion or atresia of the pleural cavity caused by various factors; (6) Single lung; and (7) Patients with severe anxiety, which cannot be alleviated by psychotherapy or medication. The above patients need to have biopsy-proven as AAH, AIS, MIA, or IAC (for patients with GGN-like IAC, distant metastases should be excluded).

In clinical practice, there are some patients who refuse both biopsy and surgery: (1) Patients with high-risk factors, malignant signs in imaging findings, such as lesions with a maximum diameter of ≥15 mm, spicule sign, lobulation, vacuole sign, pleural indentation, vascular changes, GGN growth in dynamic observation, and presence or increase of consolidation; (2) patients with no high-risk factors but with malignant signs in imaging findings, such as lesions with a maximum diameter of >15 mm, spicule sign, lobulation, vacuole sign, pleural indentation, vascular changes, GGN growth in dynamic observation, and presence or increase of consolidation; (3) patients with extreme tension and anxiety after GGN detection who cannot be alleviated by psychotherapy or medication; [10,31,158,159] (4) patients with a suspicion of lung cancer that a biopsy is too risky or difficult.[160,161] For the above four categories of patients, it is recommended that a discussion to hold with a multidisciplinary team (MDT) to formulate a preliminary diagnosis and treatment opinion, and that final diagnosis and treatment opinions be made by shared decision-making (SDM)[162-165] on the basis of a MDT. If the opinion of SDM is "direct ablation without biopsy, or synchronous ablation and biopsy," then the medical staff, the patient, and their family members (or guardians, etc.) can follow the instructions based on the opinion of SDM. SDM^[166,167] is an important component of evidence-based medicine that has attracted increasing attention as a new medical model.

Contraindications

Absolute contraindications

(1) Platelet count $<50 \times 10^{9}/L$; (2) Serious bleeding tendencies and coagulation disorders that cannot be improved in a short time (prothrombin time >18 s, prothrombin time activity <40%); (3) Severe pulmonary fibrosis and pulmonary arterial hypertension; and (4) Withdrawal of anticoagulant therapy and/or antiplatelet drug within 5–7 days before ablation.

Relative contraindications

(1) Poor control of pleural effusion; (2) severe hepatic, renal, cardiac, pulmonary, or cerebral insufficiency; (3) severe anemia, dehydration, and severe disorders of nutrient metabolism, which cannot be cured or improved in a short time; (4) severe systemic infection

and fever (>38.5°C); (5) Eastern Cooperative Oncology Group score >3; (6) psychotic episode; (7) combined with other tumors that have widespread metastases and expected patient survival period <6 months; (8) for patients with implanted cardiac pacemakers, cardiac function should be fully evaluated before RFA. Pacemakers can be stopped during RFA and restored postoperatively.

PROCEDURE PREPARATION

Evaluation and imaging examination of patients

Patients' medical history, physical examination findings, and recent medical images should be carefully reviewed to evaluate indications for thermal ablation. A MDT (from the departments of thoracic surgery, oncology, respiratory diseases, radiotherapy, interventional medicine, imaging, and pathology) is recommended for discussion and decision-making on the selection of indications. SDM should be carried out if necessary. Thin-slice chest CT (thickness ≤1 mm, within 1 month; enhancement is not required) is an essential imaging examination and should be carried out before the procedure. CT images will show the size, shape, internal structure, and location of the GGN and its relationships with important adjacent organs, blood vessels, trachea, or bronchi. If stage IA GGN is highly suspected, PET/CT or other general medical examinations can be conducted before the procedure so as to exclude or determine distant metastases.

Laboratory examinations

Laboratory examinations should include a routine blood test, urine test, and stool test, as well as an examination of coagulation function, liver function, kidney function, blood sugar, tumor marker, blood type, electrocardiogram, lung function, and Doppler echocardiography (optional for elderly patients).

Pathological examinations

PTNB or fiber optic bronchoscopy biopsies can be performed to make final diagnosis before the procedure.

Drugs and monitoring equipment

Drugs for anesthesia and analgesia, antitussives, hemostatics, and vasodilators and antihypertensive drugs, as well as rescue medicines and monitoring equipment, should be prepared before the procedure.

Patient preparation

The patient or their family or guardians must sign the informed consent form. The patient should fast for 4 h before local anesthesia or abstain from solid food for 12 h and liquids for 4 h before general anesthesia. The patient should also undergo surgical skin preparation and be administered an oral antitussive drug before the procedure. The patient should receive pre-procedure education (such as breathing training).

ANESTHESIA AND DISINFECTION

According to patients' condition, general anesthesia or local

anesthesia can be used for the procedure. The puncture point is locally infiltrated with 1%–2% lidocaine. General anesthesia is recommended for the following patients: children, patients who cannot cooperate during the procedure, patients with expected long procedure time, and patients with tumor close to the wall of the pleura, which may cause intensive pain. During the procedure, strict aseptic technique should be followed.

PROCEDURE

After an appropriate ablation technique is selected, ablation is performed. Guided by CT scan (the most common and accurate imaging guidance method), the thermal ablation applicator directly and accurately punctures through the skin and advances into the target tissue. The procedure of ablation is shown in Figure 2.

Planning

Preprocedure planning is critical toward ensuring procedure success, which mainly includes the following steps: (1) Determining the "gross tumor region (GTR)," which can be defined by imaging, including the location, size, shape, and its relationship with adjacent organs; (2) selecting the appropriate body position and the punctured sites on the body surface; (3) determining the puncture path: the path from the puncture site to the deepest border of the lesion ("target-skin distance"); and (4) preliminarily determining the ablation parameters.

Targeting

After anesthesia, in accordance with the GTR in pre-procedure planning, the ablation applicator is used to puncture at the puncturing site on the body surface, and advance layer by layer along the predetermined puncture path, which is the "target-skin distance" determined in pre-procedure planning. Three-dimensional reconstructed images obtained by CT scans are used to observe the relative location of the ablation applicator inside patient's body until it reaches the target lesion.

Ablation

According to the size and location of GGN, multiple modes can be applied for ablation of the target tissues: (1) Single site in one session for completing the ablation; (2) multi-site in one session for completing the ablation; (3) multi-applicator and multi-site in one session (each session has three or fewer lesions) or multi-site in multi-session for completing the ablation with an interval of approximately 15 days between lesions in both lungs. The ablation parameters (temperature, power, time, and cycle, etc.) vary between different devices.

Monitoring

During the procedure, the applicator is monitored with CT to observe any "off-target," whether the applicator should be adjusted, whether the pre-planning range of ablation is achieved, or whether there are any complications (such as hemorrhage or pneumothorax) during the procedure. During the procedure, due to the damage caused by thermal ablation to the lung tissue adjacent to GGN, there could be an opaque, high-density area around the tumor, which is called GGO. When the GGO around the GTR is greater than the GTR border before ablation, the ablation applicator can be pulled out. The target tissue at this time is defined as the post-ablation target zone (PTZ). During the procedure, patient's vital signs should be monitored closely, as well as any complications such as cough, hemoptysis and pain. Symptomatic treatment should be provided if necessary.

Intraprocedural modification

The operator can utilize image-based information obtained during monitoring to modify the ablation treatment as needed in order to achieve the best outcome. Intraprocedural modification may simply be the repositioning of an applicator and adjusting the parameters of the ablation on the basis of physician experience and imaging findings, or it could be as sophisticated as an automated system that automatically terminates the ablation at a critical point during the procedure. For example, operator can adjust the applicator border for GGN ablation if the border of a tumor surrounded by blood vessels indicates incomplete ablation based on the physicians' experience.

Assessment of immediate treatment response

A repeat (preferably whole-lung) CT scan should be carried out at the end of the procedure in order to assess immediate response including the following: (1) Preliminarily evaluating the technical success; (2) Observing the ablation margin. When ablation is performed with a curative intent, assessment should demonstrate that the PTZ encompasses the GTR including a circumferential ablative margin (GGO: at least 5 mm); (3) Identifying any complications. The patient can return to the ward if the blood pressure, heart rate, and blood oxygen saturation are normal, and there is no hemoptysis, shortness of breath, chest tightness, dyspnea, and other symptoms.

Postprocedure management

Vital signs should be monitored, and the chest radiograph or CT scan should be taken in 24–48 h, which is aimed at observing the occurrence of complications (such as asymptomatic pneumothorax or pleural effusion).

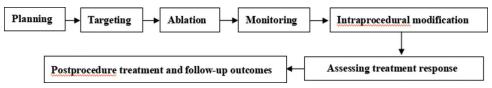


Figure 2: Ablation procedure

FOLLOW-UP AND OUTCOMES

Follow-up

The first chest CT should be performed at 1 month after the procedure, whereas the second one should be performed after 3 months to observe any complications and to determine if complete ablation of local lesions is achieved. Thereafter, chest CT should be performed every 6 months, mainly to observe relapses of local lesions, formation of scars, and if there is any new lesion in the lungs. Annual chest CT should be performed after two years.

Postprocedure imaging characteristics and response assessment

Local response

Computed tomography imaging characteristics

After thermal ablation, due to bleeding, edema, exudation, and infiltration of inflammatory cells around the ablation zone, PTZ will be significantly larger than the original tumor GTR. This imaging characteristic will last for 3 months. Therefore, the traditional Response Evaluation Criteria in Solid Tumors is not suitable for the evaluation of local efficacy after thermal ablation. After the ablation, CT characteristics are as follows: PTZ will be enlarged in the first 1-3 months, remain stable or gradually involute, and decrease in size after 3 months. (1) Early phase (within one week). There are three layers: (a) The inner layer is solid, honeycomb-like, or hypo-attenuating bubbles can be observed within PTZ; (b) the intermediate layer is the GGO. It is generally believed that GGO should be at least 5 mm beyond the GTR border to achieve complete ablation of the GGN; (c) the outer layer. There is a reaction zone outside the GGO layer, with density slightly higher than that of the GGO. This typical imaging characteristic is called the "cockade" or "fried eggs" sign, which is more obvious in 24–48 hours after ablation. (2) Intermediate phase (one week to three months). As the ablation zone increases constantly, the GGO disappears, and a sharp enhanced ring may appear around the perimeter (benign peri-ablation enhancement), which is known as the "egg shell" sign (a thin rim peripheral to PTZ, formed by a relatively symmetric and uniform process, with smooth inner margin, measuring 0.5-3 mm). (3) Late phase (after 3 months), the PTZ remains stable when compared with that at baseline, which is generally found by CT at about 4-6 weeks after ablation). Subsequent follow-up CT results of PTZ may present several different patterns, such as fibrosis, cavities, nodules, atelectasis, disappearance, enlargement (possible hyperplastic fibrosis, progression, or recurrence).[32,168] The characteristics of imaging changes after cryoablation are different from the imaging after RFA and MWA, but the above process can be used as reference.

Assessment of local response

The response is determined by comparing the CT images to the baseline of the lesion at 4–6 weeks after ablation. (1) Complete ablation (with any one of the following patterns): (a) lesion disappears; (b) cavity completely

forms; (c) fibrosis or scar; (d) solid nodule involution or no change, without contrast-enhanced signs on the CT or any fluorodeoxyglucose (FDG) uptake on the PET/CT; (e) atelectasis, lesion in atelectasis without contrast-enhanced signs on the CT or any FDG uptake on the PET/CT. (2) Incomplete ablation (with any one of the following patterns): (a) cavity partially forms, with some typical GGNs remaining, irregular peripheral or internal enhancement signs on the CT, or intense FDG uptake on the PET/CT; (b) partial fibrosis, with consolidation in lesions, and the CT scan of the consolidation is enhanced or PET/CT shows that tumors have metabolic activities; (c) solid nodules, with no change or increase in size, which present as irregular peripheral or internal enhancement signs on CT, or intense FDG uptake on the PET/CT. (d) atelectasis, lesion in atelectasis with contrast-enhanced signs on the CT or intense FDG uptake on the PET/CT; (3) local progression (with any one of the following patterns): (a) enlarged by 10 mm, with enlarged irregular or typical GGN signs on the CT or enlarged intense FDG uptake on the PET/CT; (b) local, newly developed lesion, with typical GGN signs on the CT or newly developed intense FDG uptake on the PET/CT.

Clinical outcomes

Regular follow-up should be performed to assess local response. The following are longitudinal follow-up guidelines: (1) Technical success and early safety data: minimum 6-month follow-up; (2) preliminary clinical outcomes: Minimum 1-year follow-up; (3) intermediate data: Minimum 3–5-year follow-up; (4) long-term data: at least 6–10-year follow-up.

COMPLICATIONS AND MANAGEMENT

Ablation of pulmonary nodules is a relatively safe local therapy. The complications reported are based on the classifications of the American Society of Interventional Radiology (SIR) criteria [Table 1]. [169] The definition of a major complication is an event that leads to substantial morbidity and disability, which increases the level of care required, or leads to hospital admission or one that substantially lengthens hospital stay (SIR classifications C-E). The complication includes any conditions that require blood transfusion or interventional drainage procedure. Any patient death within 30 days of image-guided GGN ablation should be addressed (SIR classification F). All other complications are considered minor. According to the time of occurrence, the complications are classified into immediate complication (<24 h after procedure), perioperative complication (24 h - 30 days after procedure), and delayed complications (>30 days after procedure).

Side effects

Pain

After a procedure under local anesthesia, patients may experience varying degrees of pain (particularly for the ablation of lesions near pleura where analgesic therapy is generally necessary). If the pain is severe, the amount of analgesic drug (such as an opioid) can be increased, as well

Table 1: The American Society of Interventional Radiology classification system for complications by outcome

Classification	Definition
Side effects	Pain
	Postablation syndrome
	Asymptomatic pleural effusion
	Nonconsequential damages to adjacent
	structures
Minor complications	No therapy, no consequence
	Nominal therapy, no consequence; includes
	overnight admission for observation only
Major complications	Require therapy, minor hospitalization (≤48 h)
	Require major therapy, unplanned increase in
	level of care, prolonged hospitalization (>48 h)
	Permanent adverse sequelae
	Death

as giving appropriate amount of sedatives. Postprocedural pain is usually mild, which can last for several days, but may last for 1–2 weeks in some patients. Moderate or severe pain is rare. Nonsteroidal drugs can also be administered to relieve pain.

Postablation syndrome

About one-third of patients may suffer from postablation syndrome, which is caused by the absorption of necrotic substances and the release of inflammatory cytokines. Low-grade fever, fatigue, general malaise, nausea, and vomiting are the most common symptoms, which generally last for 3–5 days. In special cases, nonsteroidal drugs and small doses of glucocorticoids can be used in the short term.

Cough

Cough is a very common symptom during ablation. Severe cough may cause or aggravate pneumothorax or subcutaneous emphysema, sometimes rendering the ablation antenna off-target. Some patients might not be able to tolerate the procedure due to severe cough. The reasons for cough may be the stimulation of alveoli, bronchial intima, or pleura caused by increased local temperature during the procedure. Postprocedure cough is caused by the inflammation of tissue necrosis and heat injury around the lung tissues. Oral codeine is helpful to prevent coughing if it is given one hour before the procedure. The procedure is not affected by mild cough. For the postprocedure cough, antitussive, expectorant, and necessary antibiotics should be given as appropriate.

Complications

Pneumothorax

Pneumothorax is the most common complication after ablation, with an incidence of 50%. Pneumothorax is more common in the following conditions: emphysema, male, age >60 years old, GGN in the lower lobe, >3 punctures for a single GGN in the lung tissues, multiple GGNs and multiple puncture and ablations, and a long part of the ablation path goes through the lung tissues or through a large lobe

fissure. Most cases of pneumothorax can be easily treated or are self-limiting. In 15% of pneumothorax cases, chest tube placement for drainage is required. If there is still a gas leakage after thoracic drainage, continuous negative suction, pleurodesis, endoscopic injection sclerotherapy, tracheal valve implantation, and other measures can be employed. In addition, the occurrence of delayed pneumothorax should be monitored.

Pleural effusion

A small amount of pleural effusion is often observed after ablation, with an incidence rate of 30%. The occurrence of pleural effusion is associated with increased pleural temperature during the procedure, which may indicate that pleural effusion is related to pleuritis induced by thermal injury. Approximately 5% of pleural effusions require puncture/catheter drainage. Risk factors for pleural effusion include large lesions, single ablation for multiple lesions, lesions close to the pleura (<10 mm), and long procedure duration.

Hemorrhage

The incidence of hemorrhage during ablation is 3%-8%. Hemorrhage may present as hemoptysis, hemothorax, hemorrhagic shock, and acute respiratory failure, but it mainly presents as hemoptysis and hemothorax. (1) Hemoptysis: the incidence of massive hemoptysis is very low during ablation. Risk factors for intraparenchymal hemorrhage include: (a) lesion has a diameter < 1.5 cm wherein the applicator need to be adjusted in order for to enter the targeted small lesions; (b) lesions located in the middle and lower lung, where the lesions are more easily influenced by respiratory movement and more difficult to be punctured. In addition, the blood vessels are more easily damaged by the movement of the applicator tip; (c) the path of the applicator penetrating the lung tissues is more than >2.5 cm, where these lesions are closer to the hilum and surrounded by large blood vessels; (d) the pulmonary vessels are penetrated through the ablation path; and (e) application of multipolar ablation applicator. If there is moderate hemoptysis, the ablation should be performed immediately with intravenous administration of hemostatic drugs. Ablation itself can coagulate the blood; thus, the hemorrhage will gradually stop during the ablation. During the puncture, the larger blood vessels or atelectasis in the lung tissues should be avoided. Most cases of postprocedure hemoptysis are self-limiting and only last for 3-5 days. For patients who are not suitable for conservative treatment, interventional embolization or thoracotomy can be conducted. (2) Hemothorax: the internal thoracic artery, the intercostal artery, or other arteries are damaged during puncture. During puncture, the aforementioned arteries should be avoided. If there is hemothorax, the patient should be closely monitored and actively treated with conservative treatment. For the patients who are not candidates for conservative treatment, interventional embolization or thoracotomy can be conducted.

Infection

The incidence of pulmonary infection caused by ablation is 1%–6%. Prophylactic antibiotics can be used 30–60 min before the procedure and once again in 24 h and can be extended to 48–72 h for patients >70 years old or those with COPD, poorly controlled diabetes, ablation >3 unilateral GGNs, or low immunity. If patient's body temperature is still >38.5°C at 5 days after the procedure, lung infections should be suspected. Antibiotics should be adjusted according to sputum, blood, or pus culture results. Pulmonary or chest abscesses can be drained using chest tube. It is worth mentioning that because interstitial pneumonia often occurs after radiotherapy, ablation increases the risk of secondary infection.

Cavitation

The formation of cavitation is common after lung ablation, which may be regarded as a natural outcome after ablation and the cause of serious complications, such as infection and hemorrhage. The incidence of the cavitation is about 14%–17%. In most patients, cavities occur between 15 days and 1 month after the procedure and are absorbed within 2–4 months. Risk factors for cavitation are proximity of the GGN to the chest wall and pulmonary emphysema. Cavitation infection and abscess formation should be considered when there is fever and weakness. In addition, the Aspergillus infection should be noted. Cavitation-induced recurrent hemorrhage can be treated with interventional embolization if patients are not suitable for conservative treatment.

Other rare complications

There were cases reporting complications such as bronchial pleural fistula, acute respiratory distress syndrome, bronchiolitis obliterans organizing pneumonia, nontarget thermal injury or frostbite, rib fractures, thrombocytopenia, nerve injury (brachial plexus, intercostal, phrenic, laryngeal), pulmonary embolism, systemic air embolism, pericardial tamponade, and so on. Each case should be treated individually.

CONCLUSIONS

On the one hand LDCT lung cancer screening has played a positive role in the detection of early stage lung cancer and the reduction of lung cancer mortality, but on the other hand it also causes a series of social, psychological and economic issues for patients. Therefore, efforts to balance the cost and benefit of the LDCT lung cancer screening and MDT discussion opinions from multiple dimensions to maximize the benefits and minimize the risks for patients. In addition, LDCT is only one imaging technology for lung cancer screening, and the combined screening mode of biomarkers and imaging may be more helpful for early diagnosis of lung cancer. Therefore, the search for biomarkers with high sensitivity and specificity is one direction for cancer screening in the future.

Local surgical resection treatment is still the main therapy for GGN. As a minimally invasive local therapy, thermal ablation has shown certain advantages in treating GGN (particularly multiple GGNs). Afterall, there are still many challenges to overcome for applying thermal ablation for GGN. (1) From the perspective of clinical practice, the number of cases of thermal ablation to treat GGN is relatively smaller than that of VATS. (2) There is a lack of long-term (>10 years) follow-up on clinical outcomes. (3) There are few clinical trials on the use of thermal ablation for GGN. It is necessary to perform a prospective, randomized controlled, multicenter clinical trial of thermal ablation for GGN. (4) How to reach precise location, improve the positive rate of biopsy, and improving rates of complete ablation will be some focus areas for future studies. (5) Electromagnetic navigation bronchoscopy-guided thermal ablation for GGN is developing, and has shown certain advantages, but it may be difficult to popularize. (6) Basic research, such as complex thermal field distribution, is lagging. (7) Different types of the thermal ablation applicator should be developed for better control of size and shape of the ablation zone.

In the near future, we believe that thermal ablation will challenge surgery and become a novel therapy for GGN.

Financial support and sponsorship

Nil

Conflicts of interest

There are no conflicts of interest.

REFERENCES

- Latest Global Cancer Data: Cancer Burden Rises To 19.3 Million New Cases and 10.0 Million Cancer Deaths in 2020. Available from: https:// www.iarc.fr/faq/latest-global-cancer-data-2020-qa/.
- National Lung Screening Trial Research Team, Aberle DR, Adams AM, Berg CD, Black WC, Clapp JD, et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med 2011:365:395-409.
- He YT, Zhang YC, Shi GF, Wang Q, Xu Q, Liang D, et al. Risk factors for pulmonary nodules in north China: A prospective cohort study. Lung Cancer 2018;120:122-9.
- Yang W, Qian F, Teng J, Wang H, Manegold C, Pilz LR, et al. Community-based lung cancer screening with low-dose CT in China: Results of the baseline screening. Lung Cancer 2018;117:20-6.
- Fan L, Wang Y, Zhou Y, Li Q, Yang W, Wang S, et al. Lung cancer screening with low-dose CT: Baseline screening results in Shanghai. Acad Radiol 2019;26:1283-91.
- Xu GH, Huang HX, Chen B, Luo DY, Wu JB, Zuo X, et al. A study on the first chest low-dose CT screening and susceptible factors of pulmonary nodules in 23,695 physical examinees in a medical examination center. Fudan Xue Bao (Yi Xue Ban)(Chinese) 2020;47:654-9.
- Callister ME, Baldwin DR, Akram AR, Barnard S, Cane P, Draffan J, et al. British Thoracic Society guidelines for the investigation and management of pulmonary nodules. Thorax 2015;70 Suppl 2:i1-54.
- Liu Y, Luo H, Qing H, Wang X, Ren J, Xu G, et al. Screening baseline characteristics of early lung cancer on low-dose computed tomography with computer-aided detection in a Chinese population. Cancer Epidemiol 2019;62:101567.
- 9. Bach PB, Mirkin JN, Oliver TK, Azzoli CG, Berry DA, Brawley OW, et al.

- Benefits and harms of CT screening for lung cancer: A systematic review. JAMA 2012;307:2418-29.
- Zhao Y, Wang R, Chen H. Progressions on diagnosis and treatment of ground-glass opacity. Zhongguo Fei Ai Za Zhi 2016;19:773-7.
- 11. Kaaks R, Delorme S. Lung cancer screening by low-dose computed tomography Part 1: Expected benefits, possible harms, and criteria for eligibility and population targeting. Rofo 2021;193:527-36.
- 12. Bellinger C, Pinsky P, Foley K, Case D, Dharod A, Miller D. Lung cancer screening benefits and harms stratified by patient risk: Information to improve patient decision aids. Ann Am Thorac Soc 2019;16:512-4.
- Clark SD, Reuland DS, Enyioha C, Jonas DE. Assessment of lung cancer screening program websites. JAMA Intern Med 2020;180:824-30.
- 14. Society of Respiratory Diseases Lung Cancer Group of Chinese Medical Association, Chinese Lung Cancer Association. Chinese expert consensus on diagnosis and treatment of lung nodules (2018 edition). Zhonghua Jie He He Hu Xi Za Zhi 2018;41:763-71.
- He J, Li N, Chen WQ, Wu N, Shen HB, Jiang Y, et al. Guidelines for lung cancer screening and early diagnosis and treatment in China (2021, Beijing). Zhonghua Zhong Liu Za Zhi 2021;43:243-68.
- Nakazawa S, Shimizu K, Mogi A, Kuwano H. VATS segmentectomy: Past, present, and future. Gen Thorac Cardiovasc Surg 2018;66:81-90.
- Jiang Y, Su Z, Liang H, Liu J, Liang W, He J. Video-assisted thoracoscopy for lung cancer: Who is the future of thoracic surgery? J Thorac Dis 2020;12:4427-33.
- Hernandez-Vaquero D, Vigil-Escalera C, Pérez-Méndez I, Gutiérrez A, Avanzas P, Wei Y, et al. Survival after thoracoscopic surgery or open lobectomy: Systematic review and meta-analysis. Ann Thorac Surg 2021;111:302-13.
- Chen D, Kang P, Tao S, Li Q, Wang R, Tan Q. Cost-effectiveness evaluation of robotic-assisted thoracoscopic surgery versus open thoracotomy and video-assisted thoracoscopic surgery for operable non-small cell lung cancer. Lung Cancer 2021;153:99-107.
- Kakinuma R, Noguchi M, Ashizawa K, Kuriyama K, Maeshima AM, Koizumi N, et al. Natural history of pulmonary subsolid nodules: A prospective multicenter study. J Thorac Oncol 2016;11:1012-28.
- Shigefuku S, Shimada Y, Hagiwara M, Kakihana M, Kajiwara N, Ohira T, et al. Prognostic significance of ground-glass opacity components in 5-year survivors with resected lung adenocarcinoma. Ann Surg Oncol 2021;28:148-56.
- Wang Q, Jiang W, Wang L, Xi JJ. Treatment principle and surgical technique of pulmonary ground glass nodules. Zhonghua Zhong Liu Za Zhi 2019;41:6-9.
- Meng Y, Liu CL, Cai Q, Shen YY, Chen SQ. Contrast analysis of the relationship between the HRCT sign and new pathologic classification in small ground glass nodule-like lung adenocarcinoma. Radiol Med 2019;124:8-13.
- Zhang Y, Chen H. Commentary: Is sublobar resection enough for ground-glass opacity-dominant lung adenocarcinoma? J Thorac Cardiovasc Surg 2020;S0022-5223(20): 32782-3.
- Zhang Y, Fu F, Chen H. Management of ground-glass opacities in the lung cancer spectrum. Ann Thorac Surg 2020;110:1796-804.
- Lee HW, Jin KN, Lee JK, Kim DK, Chung HS, Heo EY, et al. Long-term follow-up of ground-glass nodules after 5 years of stability. J Thorac Oncol 2019;14:1370-7.
- Mironova V, Blasberg JD. Evaluation of ground glass nodules. Curr Opin Pulm Med 2018;24:350-4.
- Kozower BD, Larner JM, Detterbeck FC, Jones DR. Special treatment issues in non-small cell lung cancer: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest 2013;143:S369-99.
- Jiang G, Chen C, Zhu Y, Xie D, Dai J, Jin K, et al. Shanghai pulmonary hospital experts consensus on the management of ground-glass nodules suspected as lung adenocarcinoma (Version 1). Zhongguo Fei Ai Za Zhi 2018;21:147-59.
- Liu J, Liu XQ, Yan BD, Xue YJ, Han XX, Li H, et al. Pulmonary multiple nodules: Benign or malignant? Chin Med J (Engl) 2018;131:1999-2001.

- Song Y, Yuan DM. Some considerations in the management of pulmonary nodules. Zhonghua Yi Xue Za Zhi 2019;99:81-3.
- 32. Ye X, Fan W, Wang H, Wang J, Wang Z, Gu S, et al. Expert consensus workshop report: Guidelines for thermal ablation of primary and metastatic lung tumors (2018 edition). J Cancer Res Ther 2018;14:730-44.
- Chu KF, Dupuy DE. Thermal ablation of tumours: Biological mechanisms and advances in therapy. Nat Rev Cancer 2014;14:199-208.
- Postmus PE, Kerr KM, Oudkerk M, Senan S, Waller DA, Vansteenkiste J, et al. Early and locally advanced non-small-cell lung cancer (NSCLC): ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2017;28:iv1-21.
- Quirk MT, Lee S, Murali N, Genshaft S, Abtin F, Suh R. Alternatives to surgery for early-stage non-small cell lung cancer: Thermal ablation. Clin Chest Med 2020;41:197-210.
- 36. Zeng C, Lu J, Tian Y, Fu X. Thermal ablation versus wedge resection for stage I non-small cell lung cancer based on the eighth edition of the TNM classification: A population study of the US SEER database. Front Oncol 2020;10:571684.
- Wu J, Bai HX, Chan L, Su C, Zhang PJ, Yang L, et al. Sublobar resection compared with stereotactic body radiation therapy and ablation for early stage non-small cell lung cancer: A National Cancer Database study. J Thorac Cardiovasc Surg 2020;160:1350-7.e11.
- Ager BJ, Wells SM, Gruhl JD, Stoddard GJ, Tao R, Kokeny KE, et al. Stereotactic body radiotherapy versus percutaneous local tumor ablation for early-stage non-small cell lung cancer. Lung Cancer 2019;138:6-12.
- Uhlig J, Ludwig JM, Goldberg SB, Chiang A, Blasberg JD, Kim HS. Survival rates after thermal ablation versus stereotactic radiation therapy for stage 1 non-small cell lung cancer: A national cancer database study. Radiology 2018;289:862-70.
- Shyn PB. Is image-guided thermal ablation ready for treatment of stage 1 non-small cell lung cancer? Radiology 2018;289:871-2.
- 41. Ni Y, Xu H, Ye X. Image-guided percutaneous microwave ablation of early-stage non-small cell lung cancer. Asia Pac J Clin Oncol 2020;16:320-5.
- Wei YT. Applicable CT-guided percutaneous radiofrequency ablation (RFA) in the treatment of unresectable lung ground glass opacity (GGO). Ann Oncol 2017;28 Suppl 2:ii47.
- Iguchi T, Hiraki T, Gobara H, Fujiwara H, Matsui Y, Soh J, et al. Percutaneous radiofrequency ablation of lung cancer presenting as ground-glass opacity. Cardiovasc Intervent Radiol 2015;38:409-15.
- Kodama H, Yamakado K, Hasegawa T, Takao M, Taguchi O, Fukai I, et al. Radiofrequency ablation for ground-glass opacity-dominant lung adenocarcinoma. J Vasc Interv Radiol 2014;25:333-9.
- 45. Yang X, Ye X, Lin Z, Jin Y, Zhang K, Dong Y, *et al.* Computed tomography-guided percutaneous microwave ablation for treatment of peripheral ground-glass opacity-Lung adenocarcinoma: A pilot study. J Cancer Res Ther 2018;14:764-71.
- 46. Huang G, Yang X, Li W, Wang J, Han X, Wei Z, et al. A feasibility and safety study of computed tomography-guided percutaneous microwave ablation: A novel therapy for multiple synchronous ground-glass opacities of the lung. Int J Hyperthermia 2020;37:414-22.
- Liu S, Zhu X, Qin Z, Xu J, Zeng J, Chen J, et al. Computed tomography-guided percutaneous cryoablation for lung ground-glass opacity: A pilot study. J Cancer Res Ther 2019;15:370-4.
- Chi J, Wang Z, Ding M, Hu H, Zhai B. Technical safety and efficacy of a blunt-tip microwave ablation electrode for CT-guided ablation of pulmonary ground-glass opacity nodules. Eur Radiol 2021;31:7484-90.
- Hertzanu Y, Ye X. Computed tomography-guided percutaneous microwave ablation: A new weapon to treat ground-glass opacity-lung adenocarcinoma. J Cancer Res Ther 2019;15:265-6.
- Xue G, Li Z, Wang G, Wei Z, Ye X. Computed tomography-guided percutaneous microwave ablation for pulmonary multiple ground-glass opacities. J Cancer Res Ther 2021;17:811-3.
- 51. Austin JH, Müller NL, Friedman PJ, Hansell DM, Naidich DP,

- Remy-Jardin M, et al. Glossary of terms for CT of the lungs: Recommendations of the Nomenclature Committee of the Fleischner Society. Radiology 1996;200:327-31.
- 52. Baldwin DR, Callister ME, Guideline Development Group. The British Thoracic Society guidelines on the investigation and management of pulmonary nodules. Thorax 2015;70:794-8.
- Lee HY, Choi YL, Lee KS, Han J, Zo JI, Shim YM, et al. Pure ground-glass opacity neoplastic lung nodules: Histopathology, imaging, and management. AJR Am J Roentgenol 2014;202:W224-33.
- Gould MK, Tang T, Liu IL, Lee J, Zheng C, Danforth KN, et al. Recent trends in the identification of incidental pulmonary nodules. Am J Respir Crit Care Med 2015;192:1208-14.
- Loverdos K, Fotiadis A, Kontogianni C, Iliopoulou M, Gaga M. Lung nodules: A comprehensive review on current approach and management. Ann Thorac Med 2019;14:226-38.
- 56. International Early Lung Cancer Action Program Investigators, Henschke CI, Yankelevitz DF, Libby DM, Pasmantier MW, Smith JP, et al. Survival of patients with stage I lung cancer detected on CT screening. N Engl J Med 2006;355:1763-71.
- 57. Kim H, Park CM, Woo S, Lee SM, Lee HJ, Yoo CG, et al. Pure and part-solid pulmonary ground-glass nodules: Measurement variability of volume and mass in nodules with a solid portion less than or equal to 5 mm. Radiology 2013;269:585-93.
- Yatabe Y, Borczuk AC, Powell CA. Do all lung adenocarcinomas follow a stepwise progression? Lung Cancer 2011;74:7-11.
- 59. Kobayashi Y, Mitsudomi T, Sakao Y, Yatabe Y. Genetic features of pulmonary adenocarcinoma presenting with ground-glass nodules: The differences between nodules with and without growth. Ann Oncol 2015;26:156-61.
- 60. Detterbeck FC, Bolejack V, Arenberg DA, Crowley J, Donington JS, Franklin WA, et al. The IASLC lung cancer staging project: Background data and proposals for the classification of lung cancer with separate tumor nodules in the forthcoming eighth edition of the TNM classification for lung cancer. J Thorac Oncol 2016;11:681-92.
- Gao JW, Rizzo S, Ma LH, Qiu XY, Warth A, Seki N, et al. Pulmonary ground-glass opacity: Computed tomography features, histopathology and molecular pathology. Transl Lung Cancer Res 2017;6:68-75.
- WHO Classification of Tumours Editorial Board. Thoracic Tumours WHO
 Classification of Tumours. 5th ed., Available from: https://publications.
 iarc.fr/Book-And-Report-Series/Who-Classification-Of-Tumours/
 Thoracic-Tumours-2021.
- McWilliams A, Tammemagi MC, Mayo JR, Roberts H, Liu G, Soghrati K, et al. Probability of cancer in pulmonary nodules detected on first screening CT. N Engl J Med 2013;369:910-9.
- 64. Heuvelmans MA, Walter JE, Peters RB, Bock GH, Yousaf-Khan U, Aalst CM, et al. Relationship between nodule count and lung cancer probability in baseline CT lung cancer screening: The NELSON study. Lung Cancer 2017;113:45-50.
- Liu B, Ye X. Management of pulmonary multifocal ground-glass nodules: How many options do we have? J Cancer Res Ther 2020;16:199-202.
- Jia Q, Chen H, Chen X, Tang Q. Barriers to low-dose CT lung cancer screening among middle-aged Chinese. Int J Environ Res Public Health 2020:17:7107
- 67. Yang D, Liu Y, Bai C, Wang X, Powell CA. Epidemiology of lung cancer and lung cancer screening programs in China and the United States. Cancer Lett 2020;468:82-7.
- Kobayashi Y, Ambrogio C, Mitsudomi T. Ground-glass nodules of the lung in never-smokers and smokers: Clinical and genetic insights. Transl Lung Cancer Res 2018;7:487-97.
- 69. Skjefstad K, Grindstad T, Khanehkenari MR, Richardsen E, Donnem T, Kilvaer T, et al. Prognostic relevance of estrogen receptor α , β and aromatase expression in non-small cell lung cancer. Steroids 2016;113:5-13.
- Yu YW, Wang CP, Han YF, Niu JJ, Zhang YZ, Fang Y. Meta-analysis on related risk factors regarding lung cancer in non-smoking Chinese

- women. Zhonghua Liu Xing Bing Xue Za Zhi 2016;37:268-72.
- Christe A, Szucs-Farkas Z, Huber A, Steiger P, Leidolt L, Roos JE, et al.
 Optimal dose levels in screening chest CT for unimpaired detection and volumetry of lung nodules, with and without computer assisted detection at minimal patient radiation. PLoS One 2013;8:e82919.
- Ludwig M, Chipon E, Cohen J, Reymond E, Medici M, Cole A, et al. Detection of pulmonary nodules: A clinical study protocol to compare ultra-low dose chest CT and standard low-dose CT using ASIR-V. BMJ Open 2019;9:e025661.
- Ohno Y, Aoyagi K, Chen Q, Sugihara N, Iwasawa T, Okada F, et al. Comparison of computer-aided detection (CADe) capability for pulmonary nodules among standard-, reduced- and ultra-low-dose CTs with and without hybrid type iterative reconstruction technique. Eur J Radiol 2018;100:49-57.
- 74. Division of Cardiothoracic Medicine, Society of Radiology, Chinese Medical Association, China Institute of Food and Drug Control. Data annotation and quality control of thoracic CT pulmonary nodules (2018). Zhonghua Fang She Xue Za Zhi 2019;53:9-15.
- Godoy MC, Odisio EG, Truong MT, de Groot PM, Shroff GS, Erasmus JJ.
 Pulmonary nodule management in lung cancer screening:
 A pictorial review of lung-RADS version 1.0. Radiol Clin North Am 2018;56:353-63.
- 76. Yanagawa M, Tsubamoto M, Satoh Y, Hata A, Miyata T, Yoshida Y, et al. Lung adenocarcinoma at CT with 0.25-mm section thickness and a 2048 matrix: High-spatial-resolution imaging for predicting invasiveness. Radiology 2020;297:462-71.
- Yanagawa M, Kusumoto M, Johkoh T, Noguchi M, Minami Y, Sakai F, et al. Radiologic-pathologic correlation of solid portions on thin-section CT images in lung adenocarcinoma: A multicenter study. Clin Lung Cancer 2018;19:e303-12.
- Suzuki K, Koike T, Asakawa T, Kusumoto M, Asamura H, Nagai K, et al. A prospective radiological study of thin-section computed tomography to predict pathological noninvasiveness in peripheral clinical IA lung cancer (Japan Clinical Oncology Group 0201). J Thorac Oncol 2011;6:751-6.
- Revel MP, Merlin A, Peyrard S, Triki R, Couchon S, Chatellier G, et al. Software volumetric evaluation of doubling times for differentiating benign versus malignant pulmonary nodules. AJR Am J Roentgenol 2006;187:135-42.
- Nietert PJ, Ravenel JG, Leue WM, Miller JV, Taylor KK, Garrett-Mayer ES, et al. Imprecision in automated volume measurements of pulmonary nodules and its effect on the level of uncertainty in volume doubling time estimation. Chest 2009;135:1580-7.
- Larici AR, Farchione A, Franchi P, Ciliberto M, Cicchetti G, Calandriello L, et al. Lung nodules: Size still matters. Eur Respir Rev 2017;26:170025.
- Prayer F, Röhrich S, Pan J, Hofmanninger J, Langs G, Prosch H. Artificial intelligence in lung imaging. Radiologe 2020;60:42-7.
- Ye W, Gu W, Guo X, Yi P, Meng Y, Han F, et al. Detection of pulmonary ground-glass opacity based on deep learning computer artificial intelligence. Biomed Eng Online 2019;18:6.
- 84. Fu F, Zhang Y, Wen Z, Zheng D, Gao Z, Han H, et al. Distinct prognostic factors in patients with stage I non-small cell lung cancer with radiologic part-solid or solid lesions. J Thorac Oncol 2019;14:2133-42.
- 85. Cho J, Kim ES, Kim SJ, Lee YJ, Park JS, Cho YJ, *et al.* Long-term follow-up of small pulmonary ground-glass nodules stable for 3 years: Implications of the proper follow-up period and risk factors for subsequent growth. J Thorac Oncol 2016;11:1453-9.
- MacMahon H, Naidich DP, Goo JM, Lee KS, Leung AN, Mayo JR, et al. Guidelines for management of incidental pulmonary nodules detected on CT images: From the Fleischner Society 2017. Radiology 2017;284:228-43.
- 87. Horeweg N, van Rosmalen J, Heuvelmans MA, van der Aalst CM, Vliegenthart R, Scholten ET, et al. Lung cancer probability in patients with CT-detected pulmonary nodules: A prespecified analysis of data from the NELSON trial of low-dose CT screening. Lancet Oncol 2014;15:1332-41.

- 88. Robbins HA, Katki HA, Cheung LC, Landy R, Berg CD. Insights for management of ground-glass opacities from the National Lung Screening Trial. J Thorac Oncol 2019;14:1662-5.
- 89. Oudkerk M, Liu S, Heuvelmans MA, Walter JE, Field JK. Lung cancer LDCT screening and mortality reduction Evidence, pitfalls and future perspectives. Nat Rev Clin Oncol 2021;18:135-51.
- de Margerie-Mellon C, Gill RR, Monteiro Filho AC, Heidinger BH, Onken A, VanderLaan PA, et al. Growth assessment of pulmonary adenocarcinomas manifesting as subsolid nodules on CT: Comparison of diameter-based and volume measurements. Acad Radiol 2020;27:1385-93.
- 91. Wu F, Tian SP, Jin X, Jing R, Yang YQ, Jin M, et al. CT and histopathologic characteristics of lung adenocarcinoma with pure ground-glass nodules 10 mm or less in diameter. Eur Radiol 2017;27:4037-43.
- Zhu Y, Hou D, Lan M, Sun X, Ma X. A comparison of ultra-high-resolution CT target scan versus conventional CT target reconstruction in the evaluation of ground-glass-nodule-like lung adenocarcinoma. Quant Imaging Med Surg 2019;9:1087-94.
- Matsunaga T, Suzuki K, Takamochi K, Oh S. What is the radiological definition of part-solid tumour in lung cancer?†. Eur J Cardiothorac Surg 2017;51:242-7.
- 94. Xu DM, van Klaveren RJ, de Bock GH, Leusveld AL, Dorrius MD, Zhao Y, et al. Role of baseline nodule density and changes in density and nodule features in the discrimination between benign and malignant solid indeterminate pulmonary nodules. Eur J Radiol 2009;70:492-8.
- 95. Kobayashi H, Ohkubo M, Narita A, Marasinghe JC, Murao K, Matsumoto T, et al. A method for evaluating the performance of computer-aided detection of pulmonary nodules in lung cancer CT screening: Detection limit for nodule size and density. Br J Radiol 2017;90:20160313.
- 96. Chu ZG, Li WJ, Fu BJ, Lv FJ. CT characteristics for predicting invasiveness in pulmonary pure ground-glass nodules. AJR Am J Roentgenol 2020;215:351-8.
- Zhou QJ, Zheng ZC, Zhu YQ, Lu PJ, Huang J, Ye JD, et al. Tumor invasiveness defined by IASLC/ATS/ERS classification of ground-glass nodules can be predicted by quantitative CT parameters. J Thorac Dis 2017;9:1190-200.
- 98. Zhan Y, Peng X, Shan F, Feng M, Shi Y, Liu L, *et al.* Attenuation and morphologic characteristics distinguishing a ground-glass nodule measuring 5-10 mm in diameter as invasive lung adenocarcinoma on thin-slice CT. AJR Am J Roentgenol 2019;213:W162-70.
- Niu R, Shao X, Shao X, Wang J, Jiang Z, Wang Y. Lung adenocarcinoma manifesting as ground-glass opacity nodules 3 cm or smaller: Evaluation with combined high-resolution CT and PET/CT modality. AJR Am J Roentgenol 2019;213:W236-45.
- 100. Zhang Y, Fu F, Wen Z, Deng L, Wang S, Li Y, et al. Segment location and ground glass opacity ratio reliably predict node-negative status in lung cancer. Ann Thorac Surg 2020;109:1061-8.
- 101. Tsurugai Y, Kozuka T, Ishizuka N, Oguchi M. Relationship between the consolidation to maximum tumor diameter ratio and outcomes following stereotactic body radiotherapy for stage I non-small-cell lung cancer. Lung Cancer 2016;92:47-52.
- 102. Su H, Dai C, Xie H, Ren Y, She Y, Kadeer X, et al. Risk factors of recurrence in patients with clinical stage IA adenocarcinoma presented as ground-glass nodule. Clin Lung Cancer 2018;19:e609-17.
- 103. Wu FZ, Chen PA, Wu CC, Kuo PL, Tsao SP, Chien CC, et al. Semiquantative visual assessment of sub-solid pulmonary nodules ≥3 cm in differentiation of lung adenocarcinoma spectrum. Sci Rep 2017;7:15790.
- 104. Gao F, Sun Y, Zhang G, Zheng X, Li M, Hua Y. CT characterization of different pathological types of subcentimeter pulmonary ground-glass nodular lesions. Br J Radiol 2019;92:20180204.
- 105. Gao F, Li M, Ge X, Zheng X, Ren Q, Chen Y, et al. Multi-detector spiral CT study of the relationships between pulmonary ground-glass nodules and blood vessels. Eur Radiol 2013;23:3271-7.

- 106. Libby DM, Wu N, Lee IJ, Farooqi A, Smith JP, Pasmantier MW, et al. CT screening for lung cancer: The value of short-term CT follow-up. Chest 2006;129:1039-42.
- 107. Oh JY, Kwon SY, Yoon HI, Lee SM, Yim JJ, Lee JH, *et al.* Clinical significance of a solitary ground-glass opacity (GGO) lesion of the lung detected by chest CT. Lung Cancer 2007;55:67-73.
- 108. Felix L, Serra-Tosio G, Lantuejoul S, Timsit JF, Moro-Sibilot D, Brambilla C, et al. CT characteristics of resolving ground-glass opacities in a lung cancer screening programme. Eur J Radiol 2011;77:410-6.
- Nasim F, Ost DE. Management of the solitary pulmonary nodule. Curr Opin Pulm Med 2019;25:344-53.
- 110. Hanaoka T, Kurai M, Okada M, Ishizone S, Karasawa F, Iizuka A. Preoperative watchful-waiting time and surgical outcome of patients with non-small cell lung cancer found by chest low-dose CT screening. World J Surg 2018;42:2164-72.
- 111. Seok Y, Cho S, Kim K, Jheon S. Partly solid pulmonary nodules: Waiting for change or surgery outright? Interact Cardiovasc Thorac Surg 2014;19:556-60.
- 112. Gulati CM, Schreiner AM, Libby DM, Port JL, Altorki NK, Gelbman BD. Outcomes of unresected ground-glass nodules with cytology suspicious for adenocarcinoma. J Thorac Oncol 2014;9:685-91.
- 113. Lim HJ, Ahn S, Lee KS, Han J, Shim YM, Woo S, et al. Persistent pure ground-glass opacity lung nodules≥10 mm in diameter at CT scan: Histopathologic comparisons and prognostic implications. Chest 2013;144:1291-9.
- 114. Liu M, He WX, Song N, Yang Y, Zhang P, Jiang GN. Discrepancy of epidermal growth factor receptor mutation in lung adenocarcinoma presenting as multiple ground-glass opacities. Eur J Cardiothorac Surg 2016;50:909-13.
- Sihoe AD, Petersen RH, Cardillo G. Multiple pulmonary ground glass opacities: Is it time for new guidelines? J Thorac Dis 2018;10:5970-3.
- Qu R, Hao Z, Zhang Y, Bie L, Fu X, Zhang N. Single-center experience of simultaneous bilateral uni-portal video-assisted thoracoscopic surgery for multiple ground-glass opacities. J Cardiothorac Surg 2020:15:69.
- 117. Lococo F, Cusumano G, De Filippis AF, Curcurù G, Quercia R, Marulli G, *et al.* Current practices in the management of pulmonary ground-glass opacities: A survey of SICT members. Ann Thorac Surg 2018;106:1504-11.
- 118. Hattori A, Matsunaga T, Takamochi K, Oh S, Suzuki K. Surgical management of multifocal ground-glass opacities of the lung: Correlation of clinicopathologic and radiologic findings. Thorac Cardiovasc Surg 2017;65:142-9.
- Hattori A, Takamochi K, Oh S, Suzuki K. Prognostic classification of multiple primary lung cancers based on a ground-glass opacity component. Ann Thorac Surg 2020;109:420-7.
- 120. Taralli S, Scolozzi V, Foti M, Ricciardi S, Forcione AR, Cardillo G, et al. ¹⁸F-FDG PET/CT diagnostic performance in solitary and multiple pulmonary nodules detected in patients with previous cancer history: Reports of 182 nodules. Eur J Nucl Med Mol Imaging 2019;46:429-36.
- 121. Gu B, Burt BM, Merritt RE, Stephanie S, Nair V, Hoang CD, et al. A dominant adenocarcinoma with multifocal ground glass lesions does not behave as advanced disease. Ann Thorac Surg 2013;96:411-8.
- 122. Kim HK, Choi YS, Kim J, Shim YM, Lee KS, Kim K. Management of multiple pure ground-glass opacity lesions in patients with bronchioloalveolar carcinoma. J Thorac Oncol 2010;5:206-10.
- Liu B. Diagnosis and treatment of pulmonary multifocal ground-glass nodules. Zhongguo Fei Ai Za Zhi 2020;23:679-84.
- 124. Niyonkuru A, Bakari KH, Lan X. 18F-fluoro-2-deoxy-d-glucose PET/computed tomography evaluation of lung cancer in populations with high prevalence of tuberculosis and other granulomatous disease. PET Clin 2018;13:19-31.
- 125. Ruilong Z, Daohai X, Li G, Xiaohong W, Chunjie W, Lei T. Diagnostic value of 18F-FDG-PET/CT for the evaluation of solitary pulmonary

- nodules: A systematic review and meta-analysis. Nucl Med Commun 2017:38:67-75
- 126. Li W, Pang H, Liu Q, Zhou J. The role of 18F-FDG PET or 18F-FDG-PET/ CT in the evaluation of solitary pulmonary nodules. Eur J Radiol 2015;84:2032-7.
- 127. Hochhegger B, Alves GR, Irion KL, Fritscher CC, Fritscher LG, Concatto NH, *et al.* PET/CT imaging in lung cancer: Indications and findings. J Bras Pneumol 2015;41:264-74.
- 128. Yoon SH, Lee SM, Park CH, Lee JH, Kim H, Chae KJ, et al. 2020 clinical practice guideline for percutaneous transthoracic needle biopsy of pulmonary lesions: A consensus statement and recommendations of the Korean Society of Thoracic Radiology. Korean J Radiol 2021;22:263-80.
- 129. Yu H, Zhang C, Liu S, Jiang G, Li S, Zhang L, *et al.* Application value of coaxial biopsy system in needle cutting biopsy for focal ground glass-like density nodule. J Cancer Res Ther 2018;14:1509-14.
- 130. Chinese Anti-cancer Association Professional Committee on Cancer Intervention, China Anti-cancer Association Professional Committee on Breast Cancer. China expert consensus on percutaneous biopsy of Thoracic Tumor (2020 edition). Zhonghua Yi Xue Za Zhi 2021;101:185-98.
- 131. Han Y, Kim HJ, Kong KA, Kim SJ, Lee SH, Ryu YJ, et al. Diagnosis of small pulmonary lesions by transbronchial lung biopsy with radial endobronchial ultrasound and virtual bronchoscopic navigation versus CT-guided transthoracic needle biopsy: A systematic review and meta-analysis. PLoS One 2018;13:e0191590.
- 132. Yamagami T, Yoshimatsu R, Miura H, Yamada K, Takahata A, Matsumoto T, et al. Diagnostic performance of percutaneous lung biopsy using automated biopsy needles under CT-fluoroscopic guidance for ground-glass opacity lesions. Br J Radiol 2013;86:20120447.
- Sharma A, Shepard JO. Lung cancer biopsies. Radiol Clin North Am 2018;56:377-90.
- 134. Zhou Q, Dong J, He J, Liu D, Tian DH, Gao S, *et al.* The Society for Translational Medicine: Indications and methods of percutaneous transthoracic needle biopsy for diagnosis of lung cancer. J Thorac Dis 2018;10:5538-44.
- 135. Tsai PC, Yeh YC, Hsu PK, Chen CK, Chou TY, Wu YC. CT-guided core biopsy for peripheral sub-solid pulmonary nodules to predict predominant histological and aggressive subtypes of lung adenocarcinoma. Ann Surg Oncol 2020;27:4405-12.
- 136. Halpenny D, Das K, Ziv E, Plodkowski A, Zheng J, Capanu M, et al. Percutaneous computed tomography guided biopsy of sub-solid pulmonary nodules: Differentiating solid from ground glass components at the time of biopsy. Clin Imaging 2021;69:332-8.
- 137. Zheng YF, Jiang LM, Mao WM, Han ZQ. Percutaneous computed tomography-guided lung biopsy of solitary nodular ground-glass opacity. J Cancer Res Ther 2015;11 Suppl: C231-3.
- 138. Yang JS, Liu YM, Mao YM, Yuan JH, Yu WQ, Cheng RD, *et al.* Meta-analysis of CT-guided transthoracic needle biopsy for the evaluation of the ground-glass opacity pulmonary lesions. Br J Radiol 2014;87:20140276.
- 139. Liu GS, Wang SQ, Liu HL, Liu Y, Fu YF, Shi YB. Computed tomography-guided biopsy for small (≤20 mm) lung nodules: A meta-analysis. J Comput Assist Tomogr 2020;44:841-6.
- 140. Yamauchi Y, Izumi Y, Nakatsuka S, Inoue M, Hayashi Y, Mukai M, et al. Diagnostic performance of percutaneous core needle lung biopsy under multi-CT fluoroscopic guidance for ground-glass opacity pulmonary lesions. Eur J Radiol 2011;79:e85-9.
- 141. Huang KY, Ko PZ, Yao CW, Hsu CN, Fang HY, Tu CY, et al. Inaccuracy of lung adenocarcinoma subtyping using preoperative biopsy specimens. J Thorac Cardiovasc Surg 2017;154:332-9.e1.
- 142. Liu J, Huang W, Wu Z, Wang Z, Ding X. The application of computed tomography-guided percutaneous coaxial biopsy combined with microwave ablation for pulmonary tumors. J Cancer Res Ther 2019;15:760-5.

- 143. Wang D, Li B, Bie Z, Li Y, Li X. Synchronous core-needle biopsy and microwave ablation for highly suspicious malignant pulmonary nodule via a coaxial cannula. J Cancer Res Ther 2019;15:1484-9.
- 144. Wang J, Ni Y, Yang X, Huang G, Wei Z, Li W, et al. Diagnostic ability of percutaneous core biopsy immediately after microwave ablation for lung ground-glass opacity. J Cancer Res Ther 2019;15:755-9.
- 145. Hasegawa T, Kondo C, Sato Y, Inaba Y, Yamaura H, Kato M, et al. Pathologic diagnosis and genetic analysis of a lung tumor needle biopsy specimen obtained immediately after radiofrequency ablation. Cardiovasc Intervent Radiol 2018;41:594-602.
- 146. Hasegawa T, Kondo C, Sato Y, Inaba Y, Yamaura H, Kato M, *et al.*Diagnostic ability of percutaneous needle biopsy immediately after radiofrequency ablation for malignant lung tumors: An initial experience. Cardiovasc Intervent Radiol 2016;39:1187-92.
- 147. Li X, Ye X. Computed tomography-guided percutaneous core-needle biopsy after thermal ablation for lung ground-glass opacities: Is the method sound? J Cancer Res Ther 2019;15:1427-9.
- Kong F, Wang C, Li Y, Li X. Advances in study of the sequence of lung tumor biopsy and thermal ablation. Thorac Cancer 2021;12:279-86.
- 149. Xu JM, Yu YC, Liu Z, Liu Y, Wang FT. The application of 3D printed coplanar template combined with fixed needle technique in accurate percutaneous biopsy of small pulmonary nodules. Zhongguo Zu Zhi Gong Cheng Yan Jiu 2021;25:761-4.
- 150. Ji Z, Wang G, Chen B, Zhang Y, Zhang L, Gao F, et al. Clinical application of planar puncture template-assisted computed tomography-guided percutaneous biopsy for small pulmonary nodules. J Cancer Res Ther 2018:14:1632-7.
- 151. Bauer TL, Berkheim DB. Bronchoscopy: Diagnostic and therapeutic for non-small cell lung cancer. Surg Oncol Clin N Am 2016;25:481-91.
- 152. Epelbaum O, Aronow WS. Autofluorescence bronchoscopy for lung cancer screening: A time to reflect. Ann Transl Med 2016;4:311.
- 153. Folch EE, Labarca G, Ospina-Delgado D, Kheir F, Majid A, Khandhar SJ, et al. Sensitivity and safety of electromagnetic navigation bronchoscopy for lung cancer diagnosis: Systematic review and meta-analysis. Chest 2020;158:1753-69.
- 154. Ahmed M, Solbiati L, Brace CL, Breen DJ, Callstrom MR, Charboneau JW, et al. Image-guided tumor ablation: Standardization of terminology and reporting criteria – A 10-year update radiology. Radiology 2014;273:241-60.
- 155. Kim KY, Jin GY, Han YM, Lee YC, Jung MJ. Cryoablation of a small pulmonary nodule with pure ground-glass opacity: A case report. Korean J Radiol 2015;16:657-61.
- 156. Zhang YS, Niu LZ, Zhan K, Li ZH, Huang YG, Yang Y, et al. Percutaneous imaging-guided cryoablation for lung cancer. J Thorac Dis 2016;8:S705-9.
- 157. Venturini M, Cariati M, Marra P, Masala S, Pereira PL, Carrafiello G. CIRSE standards of practice on thermal ablation of primary and secondary lung tumours. Cardiovasc Intervent Radiol 2020;43:667-83.
- 158. Brain K, Lifford KJ, Carter B, Burke O, McRonald F, Devaraj A, *et al.* Long-term psychosocial outcomes of low-dose CT screening: Results of the UK Lung Cancer Screening randomised controlled trial. Thorax 2016;71:996-1005.
- 159. Slatore CG, Wiener RS. Pulmonary nodules: A small problem for many, severe distress for some, and how to communicate about it. Chest 2018;153:1004-15.
- 160. IJsseldijk MA, Shoni M, Siegert C, Wiering B, van Engelenburg KC, Lebenthal A, et al. Survival after stereotactic body radiation therapy for clinically diagnosed or biopsy-proven early-stage NSCLC: A systematic review and meta-analysis. J Thorac Oncol 2019;14:583-95.
- 161.NCCN Guidelines Non-Small Cell Lung Cancer: Version 4; 2021. Available from: http://www.nccn.org.
- 162. Austin CA, Mohottige D, Sudore RL, Smith AK, Hanson LC. Tools to promote shared decision making in serious illness: A systematic review. JAMA Intern Med 2015;175:1213-21.

- 163. Brenner AT, Malo TL, Margolis M, Elston Lafata J, James S, Vu MB, et al. Evaluating shared decision making for lung cancer screening. JAMA Intern Med 2018;178:1311-6.
- 164. Geerse OP, Stegmann ME, Kerstjens HA, Hiltermann TJ, Bakitas M, Zimmermann C, *et al.* Effects of shared decision making on distress and health care utilization among patients with lung cancer: A systematic review. J Pain Symptom Manage 2018;56:975-87.e5.
- 165. Nishi SP, Lowenstein LM, Mendoza TR, Lopez Olivo MA, Crocker LC, Sepucha K, et al. Shared decision-making for lung cancer screening: How well are we "sharing"? Chest 2021;160:330-40.
- 166. Stiggelbout AM, Pieterse AH, De Haes JC. Shared decision making:

- Concepts, evidence, and practice. Patient Educ Couns 2015;98:1172-9.
- 167. Rivera MP, Henderson LM. Lung cancer screening and shared decision making in cancer survivors: The long and winding road. Transl Lung Cancer Res 2019;8:119-23.
- 168. Araujo-Filho JA, Menezes RS, Horvat N, Panizza PS, Bernardes JP, Damasceno RS, et al. Lung radiofrequency ablation: Post-procedure imaging patterns and late follow-up. Eur J Radiol Open 2020;7:100276.
- 169. Sacks D, McClenny TE, Cardella JF, Lewis CA. Society of Interventional Radiology clinical practice guidelines. J Vasc Interv Radiol 2003;14:S199-202.